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Gaussian integral
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plays a remarkable role in information theory, probability, mathematics and physics



In fact, most of modern quantum field theory is built around Feynman path
integral formulation:

Z[6] = / Dde 5190

where we integrate of the space of fields @; while 0 are parameters.

The integral is typically infinite-dimensional, which does not stop
practitioners of QFT to get sensible results in agreement with experiment.

For example, current measured value of electron g-2 factor is
2.0023193043617(15)

and QFT (4-loop computation) based on independent measurement of
1/a = 137.035 998 78 (91) are in the excellent agreement: 107(-8) precision



How do we think about path integrals like this ?
Z10,h| = / Dde~ 7 5[0:0]

Here the factor called hbar is explicitly displayed.

A typical approach is to compute the asymptotic expansion of Z[0,h] in the limit

h — 0

Assuming that S[¢,0] is bounded from below and analytic in ¢, consider the
extremal point
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where the dots denote the higher order term typically
called interaction
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The partition function reduces to sum of terms, where each term is the
expectation value with respect to normal distribution
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each term in the expansion
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is pictured by QFT practitioners as a Feynman diagram

Suppose that V[¢}] contains a term like

ik
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and we compute the term
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we need a basic variation of gaussian integral to compute
which is nonzero only if n is even, and then is given by
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for example
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where g = D_l



We have just seen how to obtain the asymptotic expansion of
_ 1
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where the intermediate steps require Gaussian integration.

Why Gaussian (normal) distribution is so omni-present in physics,
mathematics and information theory?

The standard answer is that Gaussian distribution comes as a distribution
of a sum of large number of whatever distributed variables as long as

- the variation of each variable is finite
- the variables are distributed independently

This is a content of the famous central limit theorem which was published by

Laplace in 1812. There is a twist in a history of this theorem that we’ll touch
shortly.



In fact, as we shall see in the rest of the lecture, Gaussian functionals play
play instrumental role in the differential geometry, symplectic geometry,
enumerative geometry, algebraic topology, index theory, etc.

Moreover, in multiple cases, whenever something is exactly integrable,
it turns out that there was a hidden Gaussian somewhere in the problem.

Why Gaussian is everywhere in physics?

Is it an accident?

What is relation to information theory?

information, complexity, probability, dynamics,
combinatorics H statistical/quantum physics
discrete continuous

algebra geometry



The relation between discrete and continuous, between formula and shape, between
algebra and geometry, was always in the heart of mathematics

One of the key discoveries was by de Moivre in 1733:

The the number of ways to choose k out of n elements C(n,k)=n!/((n-k)'k!) is
approximated by normal (Gaussian) distribution in the limit of large (k,n).
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The left hand side of de Moivre formula involves intuitive
combinatorial integral object: binomial coefficients C(n,k)

1 simple recurrent relation:
I I Cn,k)=C(n—1,k—1)+C(n—1,k)
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The right hand side contains transcendental symbols: ‘e’, the
base of natural logarithms and square root of ‘pi’, the ratio of
circumference of circle to the diameter: magic?
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large n
small (k-n/2)/n




The consequences of the idea of de Moivre to look on the
asymptotic limit are not yet exhausted ....

The diffusion, Brownian motion, entropy, stock market model,

Feynman’s path integrals, heat kernels grow from de Moivre
observation

Gaussian distribution could be called de Moivre distribution,

- de Moivre’s paper is in 1733 (published in “Doctrine of Chances” 1738)
- Gauss’s paper on the maximal likelihood and linear regression by the
method of least squares is in 1809

Perhaps, we’ve got so used to the formula found by de Moivre, that we
sometimes forget how beautiful it is, especially in the time of its discovery

We found that Gaussian came from C(n,k). Where C(n,k) came from?

Now let us track the C(n,k) distribution to the historical roots !



The binomial coefficients C(n,k) have primarily information/combinatorial
content: they count the number of sequences of length n composed on alphabet of
two letters, say ‘L’ (light) and ‘G’ (heavy) which have exactly k letters ‘L.

For example C(5, 3) = 10

LLLGG

LLGLG

LLGGL

LGLLG 1

LGLGL .

LGGLL b2, !

GLLLG 1 4 6 4 1
GLLGL 1 5 10 10 5 1
GLGLL | §) _ 15 20 15_ §) |
GGLLL ‘

So let’s look on the history of the binomial numbers ...

We know that de Moivre was motivated by the problem of tossing a random
coin 'n’ times, which in turn was analyzed extensively by Bernoulli, and before
by Pascal among others in Europe.



Pascal published in 1653 ‘Traite du triangle arithmetique avec quelques autres’
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and after that paper we call the triangle of C(n,k) as Pascal’s triangle.

Let us check further....
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In 1527 the arithmetic
triangle of numbers C(n,k)
was published by Petrus

Apianus (German scientist \ ”"“D ZVOIQCQI'I'JUDR
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However, apparently binomial C(n,k)

can be tracked further down the history.

Omar Kayam (1048-1131), a Persian mathematician, astronomer and poet, is
claimed to know C(n,k) based on the grounds that he had algorithm to extract n-th
roots, and for that you expand (a+b)”n.

In fact Omar Kayam refers to Indian mathematicians for algorithm at n =2 and
n=3, and claims new algorithms for n>3.

Let’s check for C(n,k) in the East...



In China the arithmetic triangle of C(n,k)
is attributed to Jai Xian (1010-1070)
paper “Ruji Shisu6” by mathematician
Yang Hui (1238-1298) in his paper
“Xiangjie Jiuzhang Suanfa” (1261).

The motivation of Yang Hui and Jai Xian
seems to be the same as of Omar Kayam:
give algorithms to extract n-th roots using
binomial expansion of (a+b)*n
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How about India.

That’s where the story
becomes really interesting.

The algorithm to construct the arithmetic
triangle C(n,k) by the recursion C(n,k) =
C(n-1,k-1) + C(n-1,k) is found in

in the commentary “Mrtasanjivant”
written by Halayudha, in 10th century AD
about a certain sentence in the paper
“Chandahsastra” by Acharya Pingala
(circa 200 BC).



So who is Pingala in 1st-2nd century BC in India and what
was the problem he was trying to solve ?

In the modern language Pingala was information theorist worked on the
coding theory.

The language of the time was Sanskrit, and substantial portion of the literature was
the poetry. Aimost all of Sanskrit poetry is based on following of the certain meter or
arrangement of syllables. Prosody is the study of meter.

Syllables come come in two equivalence classes (types), an oversimplified model is:

- light (Laghu), 1 count (1 matras): a (31), i (), u (3), r (F&), | (?)
- heavy (Guru), 2 count (2 matras): a (3M),1(3), G (), T (F), e (T), ai (), o (3M), au (311)



What is a meter?

A meter of n-syllables (aksarachandah) is a binary sequence of length n of
equivalence classes (L or G) of syllables

For example, 2*n possible aksarachandah of n = 3 syllables are:

LLL  ***
LLG * % %%
LGL * k% %
LGG * k% %%
GLL *%k % *
GLG *%k % %%
GGL *%k k% %
GGG *%k k% k%

We show counts (matras) in the second column



Why keeping the same meter is useful?

This is error correction code! Composition within a given meter is
harder, but memorization and recollection is easier because of
embedded error correction code (think as a “check sum”).

Therefore, the formal study of the meters (prosody) was important information
theory problem (on the coding and the error corrections) and computational

linguists such as Pingala have been working on this problem in 100-200 BC in
India.

Mathematical equations were formulated as poetry. Precision of oral transmission

was very important. Mathematics began to study the mathematical structure of
mathematics itself (which was poetry) in 100-200 BC India.

Welcome to recursion!



Several combinatorial problems were addressed by Pingala.

The problem Lagakriya is combination counting.

How many subsets of size k in a set of size n?

A subset of set X can be encoded by characteristic function from X to {0,1}

Therefore, counting subsets of size k of set X is isomorphic to counting
{0,1} valued functions on X.

How many binary sequences of length n composed of ‘L’ and ‘G’ that
have exactly k ‘L’s?

The answer, C(n,k) was found!
Obvious to us. It was research problem at that time.

Some of currently open questions will be embarrassingly
obvious a few thousand year in the future?



The short scriptures is

— Pingala’s paper (200
BC).

The comments are by
Halayudha (around
1000 AD)

The comments contain
explicit algorithm of
computation of C(n,k)
according to translation
by Sanskrit experts:

- “Ueber die Metrik der
Inder”, Albrecht
Weber, Berlin, (1863).

- “Die Pratyayas. Ein
Beitrag zur indischen
Mathematik”, Ludwig
Alsdorf, Zeitschrift fur
Indologie und
Iranistik, 9, (1933), pp.
97-157






Jayant Shah (Northeastern University) in
“A History of Pingala's Combinatorics” (Ganita Bharati, v. 35, n. 1-2, June-December, 2013)

analyzed Indian literature between Pingala’s “Chandahsastra” (about 1st-2nd
century BC) and the commentary of Haluyudha in 10th century AD:

c. 2" century BCE Chandahsastra Pingala Included

2" century BCE to 1™ century CE Natyasastra Bharata Included
c. 550 CE Brhatsamhita Varahamihira | Refer to Kusuba

c. 600 CE Janasrayi Chandovicitih | Janasraya Included

c. 7" century CE Vrttajatisamuccaya Virahanka Included
c. 750 CE Patiganita Sridhara Refer to Shukla

c. 850 CE Ganitasarasangraha Mahavira Included

Jayant Shah’s conclusion: while the preserved evidence from the original text of
Pingala is extremely scarce, e.g.

“ekottarakramasah | purvaprkta lasamkhya”
‘Increasing by one, step-by-step, augmented by the next’

the next source “Natyasastra” by Bharata contains better preserved algorithm.

(“Natyasastra” is a paper in 4 volumes by Bharata published in 100 BC on
theory of danse, music and theater).



Here is algorithm:

ekadhikam tatha samkhyam chandaso vinivesya tu |

yavat purnantu purvena pirayeduttaram gariam || (124)
evam krtva tu sarvesam paresam purvapuranam |
kramannaidhanam ekaikam pratilomam visarjayet || (126)
sarvesam chandasamevam laghvaksaraviniscayam |

janita samavrattanam samkhyam samksepatastatha || (127)

“Natyasastra” by Bharata (2nd-1st century BC)
Jayant Shah'’s translation:

Put down (a sequence, repeatedly) increased by one up to to the number
(of syllables) of the meter.

Also, add the next number to the previous sum until finished.

Also after thus doing (the process of) addition of the next,
(that is, formation of partial sums) of all the further (sequences),

111 1 1
2 3 4 5 6
3 6 10 15 21
4 10 20 35 56

5 15 35 70126



Next Jayant Shah considers the two algorithms in Virahanka (7th century AD):
Algorithm 1: Sici prastara:

pramukhente ca ekaikam tathaiva madhya ekamabhyadhikam |
prathamadarabhya vardhante sarvankah || (6.7)

ekaikena bhajyate uparisthitam tathaiva |

paripdatya muncaikaikam suciprastare || (6.8)

tatpindyatam nipunam yavad dvitiyamapyagatam sthanam |
prastarapataganana laghukriya labhyate samkhya || (6.9)

Put down the numeral 1, in the beginning, the end and in between (as many as the
number of syllables in the meter) and one more. Increase all the numbers starting with
the first (as follows.)”

“One-by-one, add the number above (to the partial sum). In the Siici prastara,
successively leave out (the last number) one-by-one.”

“The accumulation is complete when the second place is reached (until the
number to be left out of addition is in the second place.) Laghukriya number is
obtained by carrying out the algorithm.”



Algorithm 2: Meru prastara:

iha kostakayordvayorvardhate adhahsthitam kramenaiva |
pramukhante ekaikam tatasca dvau trayascatvarah || (6.10)
uparisthitankena vardhate 'dhahsthitam kramenaiva |
merau bhavati ganand siicya esa anuharati || (6.11)
sagaravarne nkau dvaveva guru madhyamasthane |
samare punareka eva merau tathaiva sucyam || (6.12)

(Meru) “Two cells (rectangles) in a place, successively increase (the number
of cells) below them. In the first and last cell (enter) numeral 1 in (rows) 2, 3, 4

(etc).”

“Step-by-step, in (each) cell below, (place) the sum of the numbers in the (two) cells
above. The calculation of the Suici prastara is (re)created in the (table called) meru
(named after the mythical mountain). This (procedure) imitates (it.)”

“In the case of odd number of syllables, there are two large(st) numbers in the
middle, moreover, in the case of even number of syllables, there is only one (such) in

the meru, just as in Sici prastara.”

1

1

10 5 1




Of course, both of the algorithms (Suci prastara) and (Meru prastara)
are based on the recursion:

C(n,k) = C(n-1, k-1) + C(n-1,Kk)

but the order of computation is different.

The first algorithm (Suci prastara) generalizes triangular numbers
(k=2) to k-symplex numbers.

for k from 1 to k max
for n from k to n_max
C(n,k) = C(n-1, k-1) + C(n-1,k)

(The case C(n,2) and C(n,3) was known by Greeks,
but Greeks stopped at k=3 because were attached to 3d geometry)



The second algorithm (Meru prastara) is what actually leads to random
walk, Gaussian distribution, central limit theorem, Markov processes,
heat kernel and finally to the path integral of quantum field theory.

for n from 1 to n_max
for k from 1 to n-1
C(n,k) = C(n-1, k-1) + C(n-1,k)

The recursion
C(n,k) = C(n-1, k-1) + C(n-1,k)

is a discrete (difference) version of the heat (diffusion) equation, whose solution
Is the heat kernel in time ’n’ and space ‘k’. This Is one of ways to derive
Gaussian from Meru prastaara C(n,k) taking large n.

In continuous limit, if time ’'n’ is further multiplied by square root of -1 (Wick
rotation) we get Schroedinger equation on 1d particle moving on line ‘k’ and
Feynman’s formulation of quantum mechanics.



It is wonderful that the first work of information theorists (poets) in India
from 200 BC to 700 AD names
C(n,k) / discrete Gaussian / heat kernel
as Meru-prastaara “Mount Meru” which was considered to be the center of
all physical, metaphysical and spiritual universes.



While the complexity of the algorithms based on the recursion
C(n,k) = C(n-1, k-1) + C(n-1,k)

is O(n"2) addition operations for C(n,n/2), at least starting from Mahavira or
Sridhara (800-900 AD) we find algorithm with complexity of O(n) multiplications /

division operations:

ekadyekottaratah padamurdhvadharyatah kramotkramasah |
sthapya pratilomaghnam pratilomaghnena bhdajitam saram |
syallaghugurukriyeyam sankhya dvigunaikavarjita sadhva

(Write down) the arithmetic sequence starting with one and common
difference equal to one upto the number of syllables in the meter above, and
in reverse order below (the same sequence). Product of the numbers (first,
first two, first three, etc.) (of the sequence) in reverse order divided by the
product of the corresponding numbers (of the sequence) in forward order is
the laghukriya. [Mahavira, 8th-9th century AD, translated by Jayant Shah,

2013]

12 3%4*5
54 3*2™*

= C(5,3) =10



in modern notations the Mahavira/Sridhara algorithm (700 AD) reads as formula

k .
C’(n,k’):Hn_Z—l_l _n(n—1)Mn-2)...(n—k+1)

k 1-2...k

1=1

which is a contemporary definition (Newton’s) of C(n,k). (By the way, it is applicable
when 'n’ is not necessarily a positive integer).



Given Maru-prastaara
n n!

Cink) =% ) = Fitn— %)

let us see see Boltzmann - Gibbs - Shannon entropy

| will assume engineering perspective (Kolmogorov complexity) which defines entropy
of a given one time sequence as the binary length of the shortest program (in a
language of a fixed expressive power) that generates this sequence.

Remark: it is not difficult to prove that if sequence is sufficiently long, Kolmogorov
complexity is not computable. That means, that for a generic compressed
sequence, it is not possible to prove that better compression does not exist.

In other words, you never can’t exclude that your paper could be made shorter.

Since we can’t hope to compute the ideal (theoretical Kolmogorov) complexity of a
sequence, let us take practical heuristic approach



Here is an imaginary experiment.

Suppose that Pingala takes a given sequence of light (L) and heavy (G) of total length
n = 4000.
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GGGLGGGGGLGGGGGGGGGGGGLGGGGGGGGLLLLGGGGGGLGGGLGGLLGGGGLLLGLGLGGGGLGGGLGGGGGGGGGGGGGGGGGLGGGLGLGGGGGGGGGLGGGGGGGGGLGG
GGGLGGGGGLLGGGLGLGGGGGGLGGGGGLGGGLGGGLLGGGGGGGGGGGGLGLGLGLGGGGGGGGGLGGGLGLGGGGGGGGGGGGLGLLGGGGGGLGGGGLGGGLLLGGLGLLGGG
GGGGGLLGGGGGGLLGLLGGLLGGLLLLGGLGGGGGLGGGLLGGLGGGLGGGGGGGLGGGLLGGGGGGGGLGGGLGLGGGGGGGLGGLGGGLGGLGGGGGGGGGLGGGLLGGGGGGLG
GGGLGGGGGLLGLGGGGGLGGLLLGGGLGGGLGLLGGGGGLLGGGGGGLGGGGGGLLGGGGLGGGGLLGGGGGGGLGLLGGGGGGGGGLGGGGLGLGLGGLGGGLGGGGGGGGLLGG
GGGGLGLGGGLGGGGGLGGGGG

and asks how can he encode it efficiently? Pingala might feel that even if he can’t find
the best option, he will just try to use some heuristics that he had invented so far.



There 4 main algorithms known to Pingala:

ALG1. From an ordinary number ] g 1 S 2h produce a binary string at position /
in the list of all strings of length h (in some predermined order, e.g. lexicographic)

ALG2. Reverse of ALG1

ALG3. From an ordinary number | < 3 < ( (n, k) produce a binary string at position /
In the list of all strings of length n that contain exactly k symbols ‘L’

ALG4. Reverse of ALG3

Let us see what is the length of the compressed string if Pingala tries the following
encoder:

Step 1. Compute the total length n of the sequence and count the number k of ‘L’s.

Result: n = 4000, k = 1000

Step 2. Find the position i, 1 <=i <= C(n,k) of a given sequence in the
list of all sequences of length n with k ‘L’ s [ALG4]

Step 3. Encode the position i, 1 <=i <= C(n,k), to its binary string of length h
[ALG1]. It is sufficient to use minimal h such that C(n,k) <= 2”h

The decoder works in the reverse way applying ALG2 and then ALG3.

The length of the compressed sequence by Pingala’s algorithm is surely

h = |log, C(n, k)]



h — 10g2 O(n, k)
In the limit

E>1,n>1,k=pn,p=0(1)

the length h of compressed string is

n
Using de Moivre-Stirling approximation log2 nl =n 10g2 _
&

we get
kj

€

2
h = nlog, g ~ Y "k log,

j=1
which is Boltzmann - Shannon - Gibbs entropy formula

2
h:—nzpz‘bgzpz’, pr=p, p2=1-p
i=1 k.,

where p; is frequency of the symbols PDi; = g



Let’s recapitulate:

- Gaussians integrals are in the heart of quantum field theory
= Their origin is continuous limit of combinatorial objects

- Pingala’s compression of a sequence (based only on the total frequency of symbols)
and hence on C(n,k) is an approximate simplest upper bound to Kolmogorov’s
(uncomputable) ultimate entropy. This approximation is
called Boltzmann-Gibbs-Shannon entropy.

= Random walk on 1-dimension discrete lattice is computed in Pingala’s paper
[200 BC], it is called Meru-prastaara C(n,k)

- The continuous limit of Meru-prastaara C(n,k) is Gaussian [paper by de Moivre, 1733].

= We can replace R by Euclidean space R*n without any principal changes.
A multivariate Gaussian on R*n is Gauss’s 1809 paper on
astronomical observations. In the same paper we find linear regression
as a maximal likelihood for errors distributed by Gaussian.

- Feynman’s reformation of quantum mechanics of a particle on a line R
and Schrodinger equation is continuous limit of the Pingala’s C(n,k) Meru-prastaara
on Z sublattice of R. Extra twist of QM is imaginary time /—1



What is next?

The summary was essentially the state of the art circa 1810 about information
geometry.

Except that imaginary time came later with quantum mechanics.

The essentially new ideas that appeared after 1810 and continued
to the modern mathematics are:

- look on intrinsically non-flat spaces in geometry
- look non-commutative structures in algebra

In geometry, in 1828 Gauss understood 2d surfaces as a 2-dimensional manifold,
and in about 1850 Riemann proposed a version of non-flat n-dimensional spaces.

In algebra, in 1820-1830 Galois and Abel started the theory of groups in which
multiplication operation was no more necessary commutative.



So what if we combine these new ideas of non-commutative multiplication
and non-flat geometry with the random-walk

process on the 1-dimensional line obtained by de Moivre from the Pingala’s
combinatorics of binary sequences?



Recall that in the flat 1-d case, when the domain of random walk is the set of integers,
the recursion
C(n,k) = C(n-1, k - 1) + C(n-1, k)
simply expresses the process in which a particle from position ‘k’ can move
either to the left or to the right

0 1

1 1 1

2 | 2 |

3 0O O 1 3 3 1

4 O O o O 1 4 6 4 1
time >
t=n -4 -2 0 2 4 x=n-2k

v space

Moreover, such classical Pingala-Bernoulli-Pascal-Moivre random walk

iIs commutative! A step is either +1 or -1 on the lattice integer. Thenifs_1, s_2 are
steps, we have s1 + s2 =s2 + s1. This commutativity tremendously simplifies the
problem of obtaining the probability distribution C(n,k) after n steps.

C((to, o), (t1,71)) = D 1

pathS(tQ,CUQ)—)(tl ,:Cl))



But now imagine that we are studying morally the same Pingala’s
process of forming sequences of two symbols L and G, but we care also about

the order
LG versus GL

For example, imagine that L and G are consequent operations on something, so we
have associativity law:

(LG L =L(GL)
but not necessarily commutative law:

LG # GL

In modern terms we would that the set of sequences formed
by L and G is a monoid (a category with a single object)
generated by two arrows

LG ....LGLLGLGLGGG....

Because of the associativity, the parentheses are not necessary



So, instead of Pingala’s (100-200 BC) random walk generated by L = -1 and G=+1

on the flat line where the composition operation is abelian, starting from 19th century
we will consider random walks on curved spaces where

the order of steps does matter!

path @

A
/

In physics this brought non-abelian gauge theory (Yang-Mills theory) and
Einstein’s general relativity



Anyways, in the first half of 20th century we are still on the same idea:

We are interested in counting PATHS from state A to state B on a space of states X:

C(A,B)= >  exp(S[®)

paths &:A—B

(except that now X is a curved space unlike Pingala’s set of integers)

- If X is a (pseudo-) Riemannian manifold, @ is a path from point A to point B, and
S[d] is the length of the path, the result is Feynman’s path integral formulation
of quantum mechanics on the space-time X

- If X is a group, we get harmonic analysis on groups, very rich topic of 20th
century that connected geometry and arithmetics:

Harish-Chandra —> Langlands Program
—> proof of Fermat’s theorem



Notice that the sum over 1-d paths from point A to point B on a target X

C(A,B)= >  exp(S[@])

paths &:A—B

we can write as a

C(A,B)= )  exp(S[®])

decMaps(I,X)
b (01)={A,B}

where the source | is a 1-dimensional interval and the target X is
an (n)-dimensional Riemannian manifold S

)




So in the first half of 20th century the follow-ups on Pingala’s paper
counted Maps(l,X)

where the source | is 1-dimensional, and the target X is a classical
geometrical space (the dimension of X is not as important for complexity)

This gives

- quantum mechanics, harmonic analysis, stochastic processes,
Markov chains, probabilistic automata......

What is next?



What gradually happened in the course of the second half of 20th century
(and keeps going in the 21st) is the upgrade of the dimension of the source |

Remark: Maps([, X) — XI
It is much more difficult to increase the dimension of the source |.

If we discretize | and X to size N in every direction, then
‘XI‘ — (Ndx)NdI _ NdXNdI _ eXp(dXNdI logN)

However, keeping the same idea

C(A,B)= )  exp(S[®])

deMaps(I,X)
®(01)={A,B}

now we take the source / to be an n-dimensional manifold!



If the source | is 2-dimensional, the resulting information theory is called ‘string

theory’

O: I+ X

Source space |

Target space X

In a cohomological approximation (after localization) we get
‘topological string theory’.

If | has no boundaries, and X is symplectic ==> Gromov-Witten (X)

If | has boundaries, and X is symplectic with extra Lagrangian data ==> Fukaya (X)



We shall not stop at n=2, of course. If go up with the dimension n of the source,
the resulting information theory is called

n-dimensional Quantum Field Theory in physics

it is underlying simplified structure in mathematics is n-category

The program of ‘string theory’ is to
build the atlas of all possible interesting QFTs (in all dimensions)

The information theory (QFT) becomes recursively information theory about
information theory about information theory.....

What does it mean an interesting QFT?
Recall, that after discretization, a QFT is a distribution on a space of a priori dimension
‘XI‘ — (Ndx)NdI _ NdXNdI _ eXp(dXNdI IOgN)

To describe such QFT naively we would need to write down a string of this length.

An interesting QFT is the one whose description we can compress very strongly !



Like in the case of Pingala’s compression task, we don’t have an algorithm
to point out all compressible QFTs (information theories). And as far as we
currently understand theory of computational complexity, we will never
have a decisive algorithm. The only workable approach so far is heuristic.
You hire people and see what interesting QFTs (information theories) they

generate.

What are the current lampposts where we are searching for the pages of the
atlas of all QFTs?

- Locality: (topological/metric structures)
- Renormalizabilty: sensible limit of large N for X! — (NdX)NdI — N9x NI

- Various degrees of symmetries (gauge symmetry, supersymmetry, ...)

This list is not fixed. Any new organizing principle (with QFTs with short
description length) is always welcomed !



With the current lamp-posts we can see
interesting QFTs or the shadows of them up to the dimension n =10 (11)

There is a conjecture (proofs to the standards of QFT practitioners) that
with current lamp-posts, the tower of interesting QFTs
terminates at dimension n = 10 (11).

So far nothing is found for n>10 (11) except trivial QFTs.

One of the lamp-posts that keeps under control the naive description length of
exp(N™)

IS supersymmetry.



In the first approximation, the idea of supersymmetry is to replace
n-dimensional manifold by njm - dimensional supermanifold.

Locally, tangent to njm dimensional supermanifold is described by n commuting
coordinates and m anticommuting coordinates, that is Z_2 graded vector space.

A simple example of supermanifold is a total space of a tangent bundle TX
with odd (anticommuting) parity in the fiber and even parity in the base,

this is called NTX.
A function on INTX is the same as differential form on X.

G(T1, T2y ooy Ty, Ay, oy dn) = Y iy, A, Ada, - Adag,

’i1<’i2<...<ip
dCUZ' /N\ dZBj — —dZCj /N\ dCL‘Z

These notations invented by Elie Cartan are still in use.
Physicists think about “dx” as a fermion wave-function.

Not all supermanifolds are of the form NTX. So the geometry of super-manifolds,
Is not equivalent in general to the geometry of differential forms
on an ordinary manifold, but it is a good first picture to imagine.



There are symmetries. For example, the group of general linear transformations of
vector space of dimension n|m is called GL(n|m).

A maximally supersymmetric conformal gauge theory in 4 ordinary commuting
dimensions is symmetric under the action of the supergroup PSL(2,2|4); this theory is

lled
e N =4 SYM



The current conjecture of string theory (proved to various degree of certainty)
is that we have a complete atlas of irreducible theories in the class N=4 SYM.

The pages of the atlas are labelled by:

- a discrete choice G of a compact simple Lie Group,
which was famously classified by Lie, Dynkin and Cartan:

ApO—0—0------ 0—0 F,0-00-0 Gro=0
Bho—0------ 0—0=0 i
C,0—0------ 0—0<0 FO—0—0—0—0
Em—o—i—o—o—o
PhO—0------ @ E [
§ O—0O—0O—0—0—0—0

- a modular parameter T of elliptic curve (a point on complex upper half-plane)

These pages are connected by “transition functors”
(dualities are n-functors between QFTSs)

1
SY Mpa—4(G,7) & SY Mp—a(GE, )

NgT




The Langlands dual group GL comes into the game, which suggests that Langlands
functor can be embedded into non-abelian version

of Maxwell’s duality between electric and magnetic field
[Atiyah 1980s, Kapustin-Witten 2003]

The complete mathematical proof of this higher functorial duality

]
SY Mpyr—a(G,7) & SY M4 (GE, )

NgT

IS not yet achievable by the current techniques. However, there are infinitely many
projections of the Left hand side and Right hand side onto something of lower
dimension which is computable exactly by localization !

We call such observables the probes of QFTs. These supersymmetric probes
are the modern versions of measurement tools like LHC. We measure
theoretically (compute) some quantities in the left QFT and in the right QFT, and

after collecting many evidences that the measurements (projections) coincide
we think that a given pair of QFTs is isomorphic.



The main technique is Atiyah-Bott equivariant localization formula applied to
(infinite-dimensional) functional spaces of Maps(l,X).

The idea of the corresponding mathematics of equivariant cohomology
was very well explained in A. Alekseev talk on Monday, and during the panel
session, so I’'ll not repeat.

The localisation formula for a Lie group T acting on a manifold 1 reads

[ Lo
X xT €T(NXT)

In case of the 4d SYM:

1) 1 is (roughly) infinite-dimensional space of the fields of the SYM,

roughly it is a Dirak determinant bundle over Maps(M_4, BG)
where M_4 is 4-dimensional space time, and BG is classifying space of G,
e.g. the space of G-bundles on M_4 with connection

2) the equivariant Euler classes (determinants) are replaced by equivariant
superEuler classes (super-determinants)



We get infinities under control in this way.
Typical expressions which come out from the infinite-dimensional determinants are
simple infinite products like

e, en ey () = H (x + n1€1 + no€ex + ... ngeg)

n17n27°'7nd20

which is a version of multi-dimensional Gamma function found by Barnes in 1899,
and the determinants like that are summed over fixed points labelled by
d-dimensional partitions. For d=2 is it like in Euler’s function

o
2 3 4 —1
Z(q)=1+q+2¢ +3¢ +5¢* +...= [ (1 - ¢")
n=1
%?ﬁﬁmﬁﬁgg We get a non-trivial partition function Z
g g@jﬁﬁﬁ of many variables (omitted in this talk)
é% - e of the same algorithmic complexity class as
e - E@HEE - generating function of Gromov-Witten invariants of
i | arbitrary genus in toric Calabi-Yau three-folds
e e - correlation functions of the 2d CFT

This function Z serves to check transformations between pages of atlas relating

dual quantum field theories like Maxwell-Langlands modular transform.



Another example of famous duality between 2d QFTs is called Mirror Symmetry.

Mirror symmetry of string theory relates a pair of QFTs

A-theory(symplectic target X) <— — —-> B-theory(complex target Y)
A-theory (X) B-theory (Y)
X is symplectic manifold Y is complex manifold
Mapsa(l, X) Mapss( 1, X)
A-branes <———> B-branes
Mirror functor: Fukaya Category(X) <———>  D(Coh(Y))

Z[Gromov-Witten invariants] <———> Z[Periods ]



Number of rational curves of degree k in quintic Calabi-Yau

(degree 5) three-dimensio
string theory localization 1990

Nuclear Physics B359 (1991) 21-74
North-Holland

nal hypersurface in P4
“conventional” algebraic geometry 1993

A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE https://arxiv.org/abs/alg-

SUPERCONFORMAL THEORY*

geom/9301006v2

Philip CANDELAS', Xenia C. DE LA OSSA!**, Paul S. GREEN? and Linda PARKES!

60 P. Candelas et al. / Calabi-Yau manifolds

TABLE 4
The numbers of rational curves of degree k for 1 <k <10

=

Ry

2875

6 09250

3172 06375

24 24675 30000

22930 58888 87625

248 24974 21180 22000

295091 05057 08456 59250

3756 32160 93747 66035 50000

50 38405 10416 98524 36451 06250
70428 81649 78454 68611 34882 49750

O WOV A WN =

—

number of conics [28] (rational curves of degree two). Clemens has shown [30] that
n; # 0 for infinitely many k and has conjectured that n, # 0 for all k, but it seems
that the direct calculation of these numbers becomes difficult beyond k =2 (see
also ref. [28]). It is however straightforward to develop the series (5.12) to more
terms and to find the n, by comparison with (5.13). We present the first few n, in
table 4. These numbers provide compelling evidence that our assumption about

Rational curves on Calabi-Yau manifolds: verifying
predictions of Mirror Symmetry

Sheldon Katz
Department of Mathematics
Oklahoma State University

Stillwater, OK 74078
email: katzQmath.okstate.edu

-Recently, mirror symmetry, a phenomenon in superstring theory, has been
used to give tentative calculations of several numbers in algebraic geometry .
:This yields predictions for the number of rational curves of any degree d on
:general Calabi-Yau hypersurfaces in P* [2], P(2,1%), P(4,1%), and P(5,2, 1%)
1[4, 9, 11]. The techniques used in the calculation rely on manipulations
‘of path integrals which have not yet been put on a rigorous mathematical

‘footing. On the other hand, there is currently no prospect of calculating

‘most of these numbers by algebraic geometry.

¢ Until this point, three of these numbers have been verified, all for the
*quintic hypersurface in P*: the number of lines (2875) was known classically,
*the number of conics (609250) was calculated in [7], and the number of
‘twisted cubics (317206375) was found recently by Ellingsrud and Strgmme
(3]




For a QFT with moduli 6

7 = / D®de 5120

from the variation

~

S=5+ 05

define
9(595, 593) — <5955QS> — <5QS><59S>

in physics this is simply called the natural metric on the moduli space of QFTs.
(For 2d CFTs it is called in particular Zamolodchikov’s metric).

Of course it she same formula which is called Fischer’s metric in statistics.
Shall we call it Pingala’s metric?

The geometry of moduli spaces is a very rich topic in physics and mathematics.
If QFT has extra geometrical structures (supersymmetry), the moduli space comes

with natural extra geometrical data (Kahler, special Kahler, quaternionic Kahler,
hyperKahler, etc)



For example, Jockers. et al in https://arxiv.org/abs/1208.6244v3

computed Kahler metric on the moduli of 2d supersymmetric QFTs on a two-sphere.
by localization. For a particular QFT flowing to sigma-model on a quintic,
they compute easily all genus 0 GW invariants on a 3d quintic.

2
de 7 sin(5me) |— o ['(1 + 5k — 5e)
Zquintic = (22 A —(22)"°
quint (22) 271 (22) sin® (me) kz_;) [(1+k—¢)

Here ‘K’ labels fixed points in Atiyah-Bott localization, and 1-Gamma() comes from
infinite determinants of quantum fields in 2d.



For all fancy details of other localization use in QFT see 700 pages review :

Localization techniques in quantum field theories

Vasily Pestun, Maxim Zabzine,
Francesco Benini, Tudor Dimofte,
Thomas T. Dumitrescu,
Kazuo Hosomichi, Seok Kim,
Kimyeong Lee, Bruno Le Floch,
Marcos Marino, Joseph A. Minahan,
David R. Morrison, Sara Pasquetti,
Jian Qiu, Leonardo Rastelli,
Shilomo S. Razamat, Silvu S. Pufu,
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to be
continued...

Thank you all



