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Abstract This paper is a scientific exegesis and admiration of Jean-Louis Koszul’s
works on homogeneous bounded domains that have appeared over time as elementary
structures of Information Geometry. Koszul has introduced fundamental tools to
characterize the geometry of sharp convex cones, as Koszul-Vinberg characteristic
Function, Koszul Forms, and affine representation of Lie Algebra and Lie Group.
The 2nd Koszul form is an extension of classical Fisher metric. Koszul theory of
hessian structures and Koszul forms could be considered as main foundation and
pillars of Information Geometry.
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1 Preamble

«La Physique mathématique, en incorporant à sa base la notion de groupe, marque la supré-
matie rationnelle…Chaque géométrie – et sans doute plus généralement chaque organisation
mathématique de l’expérience – est caractérisée par un groupe spécial de transformations…
Le groupe apporte la preuve d’une mathématique fermée sur elle-même. Sa découverte clôt
l’ère des conventions, plus ou moins indépendantes, plus ou moins cohérentes» - Gaston
Bachelard, Le nouvel esprit scientifique, 1934

In this article, I will pay tribute to a part of Professor Jean-Louis Koszul’s work
and fundamental and deep contributions of this great algebraist and geometer in
the field of Information Geometry, which have many applications in the domain
of applied mathematics, and in the emerging applications of Artificial Intelligence
where the most efficient and robust algorithms are based on the natural gradient of
the information geometry deduced from the Fisher matrix, as Yann Ollivier recently
showed [1, 2].
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After the seminal papers of Fréchet [3], Rao [4] and Chentsov [5], many mathe-
maticians and physicists have studied Information Geometry. One can quote inmath-
ematics, the works of Amari [6, 7] in the 80 s, which does not refer to the Koszul
publications of the 50s and 60s where Koszul introduced the elementary structures
of the Hessian geometries, and generalized the Fisher metric for homogeneous con-
vex domains. In the physical field, many physicists have also addressed Information
Geometry, without references to Koszul. Weinhold [8] in 1976 and Ruppeiner [9]
in 1979 empirically introduced the inverse dual metric defined by the Hessian of
Entropy, or Ingarden [10, 11] in 1981 in Statistical Physics. Mrugala [12, 13] in
1978, and Janyszek [14] in 1989, tried to geometrize Thermodynamics by jointly
addressing Information Geometry and Contact Geometry. All these authors were
not familiar with Representations Theory introduced by Kirillov, and more particu-
larly the affine representation of Lie groups and Lie algebras, used and developed
by Koszul in mathematics and by Souriau in statistical mechanics [79–84]. It thus
appears that the first foundations of the information geometry goes back to Fréchet’s
paper of 1943 [3] (and his Lecture given during the winter of 1939 at the Institut
Henri Poincaré), who first introduced the Clairaut(-Legendre) equation (fundamental
equation in Information Geometry between dual potentials) and Fisher metric as the
Hessian of a convex function. This Fréchet’s seminal work was followed by Koszul’s
50’s papers [15, 16] which introduced new forms that generalize Fisher metric for
sharp convex cones. It was not until 1969 that Souriau completed this extension in
the framework of the Lie Group Thermodynamics with a cohomological definition
of Fisher metric [17]. This last extension was developed by Koszul at the beginning
of 80’s in his Lecture “Introduction to Symplectic Geometry” [18]. I will conclude
this survey bymaking reference to Balian [19], who has developed during 80’s Infor-
mation Geometry in Quantum Physics with a Quantum Fisher metric given by Von
Neumann Entropy hessian [20].

Inspired by the Frenchmathematical tradition, and the teachings of hismaster Elie
Cartan (Koszul was PhD student of Henri Cartan but was greatly influenced by Elie
Cartan), Jean-Louis Koszul was a real “avant-garde”, if we take the definition given
by Clausewitz«An avant-garde is a group of units intended to move in front of the
army to: explore the terrain to avoid surprises, quickly occupy the strong positions
of the battlefield (high points), screen and contain the enemy the time the army can
deploy”. Indeed, Jean-Louis Koszul was a pioneer, who explored and cleared many
areas of mathematics, detailed in the book “Selected papers of JLKoszul” [21].What
I will expose, in this paper, is therefore only one part of his work which concerns
homogeneous bounded domains geometry, from seminal Elie Cartan’s earlier work
on symmetric bounded domains. In a letter fromAndréWeil to Henri Cartan, cited in
the proceedings of the conference “Elie Cartan and today’s mathematics” in 1984, it
says “As to the symmetrical spaces, and more particularly to the symmetric bounded
domains at the birth of which you contributed, I have kept alive the memory of
the satisfaction I felt in finding some incarnations in Siegel from his first works on
quadratic forms, and later to convince Siegel of the value of your father’s ideas on
the subject”. At this 1984 conference, two disciples of Elie Cartan gave a conference,
Jean-Louis Koszul [22] and Jean-Marie Souriau (Fig. 1).
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Fig. 1 (on the left) Jean-Louis Koszul student at ENS ULM in 1940, (on the right) Jean-Louis
Koszul at GSI’13 “Geometric Science of Information” conference at the École des Mines de Paris
August 2013

In the book “Selected papers of JL Koszul” [21], Koszul summarizes the work,
I will detail in the following: “It is with the problem of the determination of the
homogeneous bounded domains posed by E. Cartan around 1935 that are related
[my papers]. The idea of approaching the question through invariant Hermitian
forms already appears explicitly in Cartan. This leads to an algebraic approach
which constitutes the essence of Cartan’s work and which, with the Lie J-algebras,
was pushed much further by the Russian School [23–36]. It is the work of Piatetski
Shapiro on the Siegel domains, then those of E.B. Vinberg on the homogeneous cones
that led me to the study of the affine transformation groups of the locally flat manifolds
and in particular to the convexity criteria related to invariant forms”. In particular,
J.L. Koszul source of inspiration is given in this last sentence of Elie Cartan’s 1935
article [37]:

“It is clear that if one could demonstrate that all homogeneous domains whose
form Φ � ∑

i, j

∂2 log K (z,z∗)
∂zi ∂z∗

j
dzi dz∗

j is positive definite are symmetric, the whole theory

of homogeneous bounded domains would be elucidated. This is a problem of Hermi-
tian geometry certainly very interesting”. It was not until 1953 that the classification
of non-Riemannian symmetric spaces has been achieved byMarcel Berger [38]. The
work of Koszul has also been extended and deepened by one of his student Jacques
Vey in [39, 40]. Jacques Vey has transposed the notion of hyperbolicity, developed
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Fig. 2 (on the left) Professor Elie Cartan, (on the right) the Cartan family

by W. Kaup for Riemann surfaces, into the category of differentiable manifolds with
flat linear connection (locally flat manifolds), which makes it possible to completely
characterize the locally flat manifolds admitting as universal covering a convex open
sharp cone of Rn, which had been studied by Koszul in [41]. The links between
Koszul’s work and those of Ernest B. Vinberg [23–30] were recently developed
at the conference “Transformation groups 2017” in Moscow dedicated to the 80th

anniversary of Professor EB Vinberg, in Dmitri Alekseevsky’s talk on “Vinberg’s
theory of homogeneous convex cones: developments and applications” [42]. Koszul
and Vinberg are actually associated with the concept of Koszul-Vinberg’s charac-
teristic function on convex cones, which I will develop later in the paper. Koszul
introduced the so-called “Koszul forms” and a canonical metric given by the Hessian
of the opposite of the logarithm of this Koszul-Vinberg characteristic function, from
which I will show the links with Fisher’s metric in Information Geometry, and its
extension (Fig. 2).

Professor Koszul’s main papers, which form the elementary structures of infor-
mation geometry, are as follows:

• «Sur la forme hermitienne canonique des espaces homogènes complexes» [15]
of 1955:Koszul considers theHermitian structure of a homogeneousG/Bmanifold
(G related Lie group and B a closed subgroup of G, associated, up to a constant
factor, to the single invariant G, and to the invariant complex structure by the
operations of G). Koszul says “The interest of this form for the determination of
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homogeneous bounded domains has been emphasized by Elie Cartan: a necessary
condition for G/B to be a bounded domain is indeed that this form is positive
definite”. Koszul calculated this canonical form from infinitesimal data Lie algebra
of G, the sub-algebra corresponding to B and an endomorphism algebra defining
the invariant complex structure of G/B. The results obtained by Koszul proved
that the homogeneous bounded domains whose group of automorphisms is semi-
simple are bounded symmetric domains in the sense of Elie Cartan. Koszul also
refers to André Lichnerowicz’s work on Kählerian homogeneous spaces [43]. In
this seminal paper, Koszul also introduced a left invariant form of degree 1 on G:
�(X) � T rg/b[ad(J X)− J.ad(X )] ∀X ∈ g with J an endomorphism of the Lie
algebra space and the trace T rg/b[.] corresponding to that of the endomorphism
g/b. The Kähler form of the canonical Hermitian form is given by the differential
of −1/4�(X) of this form of degree 1.

• «Exposés sur les espaces homogènes symétriques» [16] of 1959 is a Lecture
written as part of a seminar held in September and October 1958 at the University
of Sao Paulo, which details the determination of homogeneous bounded domains.
He returned to [15] and showed that any symmetric bounded domain is a direct
product of irreducible symmetric bounded domains, determined by Elie Cartan
(4 classes corresponding to classical groups and 2 exceptional domains). For the
study of irreducible symmetric bounded domains, Koszul refered to Elie Cartan,
Carl-Ludwig Siegel and Loo-Keng Hua. Koszul illustrated the subject with two
particular cases, the half-plane ofPoincaré and the half-space ofSiegel, and showed
thatwith its trace formula of endomorphism g/b, he found that the canonicalKähler
hermitian form and the associated metrics are the same as those introduced by
Henri Poincaré and Carl-Ludwig Siegel [44] (who introduced them as invariant
metric under action of the automorphisms of these spaces).

• «Domaines bornées homogènes et orbites de groupes de transformations
affines» [45] of 1961 is written by Koszul at the Institute for Advanced Study
at Princeton during a stay funded by the National Science Foundation. On a com-
plex homogeneous space, an invariant volume defines with the complex structure
the canonical invariant Hermitian form introduced in [15]. If the homogeneous
space is holomorphically isomorphic to a bounded domain of a space Cn, this Her-
mitian form is positive definite because it coincides with the Bergmann metric of
the domain. Koszul demonstrated in this article the reciprocal of this proposition
for a class of complex homogeneous spaces. This class consists of some open orbits
of complex affine transformation groups and contains all homogeneous bounded
domains. Koszul addressed again the problem of knowing if a complex homoge-
neous space, whose canonical Hermitian form is positive definite is isomorphic
to a bounded domain, but via the study of the invariant bilinear form defined on a
real homogeneous space by an invariant volume and an invariant flat connection.
Koszul demonstrated that if this bilinear form is positive definite then the homo-
geneous space with its flat connection is isomorphic to a convex open domain
containing no straight line in a real vector space and extended it to the initial prob-
lem for the complex homogeneous spaces obtained in defining a complex structure
in the variety of vectors of a real homogeneous space provided with an invariant
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flat connection. It is in this article that Koszul used the affine representation of Lie
groups and algebras. By studying the open orbits of the affine representations, he
introduced an affine representation of G, written (f,q), and the following equation
setting f the linear representation of the Lie algebra g of G, defined by f and q the
restriction to g and the differential of q (f and q are differential respectively of f
and q):

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ]) ∀X,Y ∈ g

with f : g → gl(E) and q : g �→ E

• «Ouverts convexes homogènes des espaces affines» [46] of 1962. Koszul is inter-
ested in this paper by the structure of the convex open non-degenerate � (with no
straight line) and homogeneous (the group of affine transformations of E leaving
stable� operates transitively in�) in a real affine space of finite dimension.Koszul
demonstrated that they can be all deduced from non-degenerate and homogeneous
convex open cones built in [45]. He used for this the properties of the group of
affine transformations leaving stable a non-degenerate convex open domain and
an homogeneous domain.

• «Variétés localement plates et convexité» [41] of 1965. Koszul established the
following theorem: let M be a locally related differentiable manifold. If the uni-
versal covering of M is isomorphic as a flat manifold with a convex open domain
containing no straight line in a real affine space, then there exists on M a closed
differential form α such that Dα (D linear covariant derivative of zero torsion) is
positive definite in all respects and which is invariant under every automorphism
of M. If G is a group of automorphisms of M such that G\M is quasi-compact and
if there exists on M a closed 1-differential form α invariant by G and such that Dα
is positive definite at any point, then the universal covering of M is isomorphic as
a flat manifold with a convex open domain that does not contain a straight line in
a real affine space.

• «Lectures onGroups ofTransformations» [47] of 1965.This is lecture notes given
byKoszul at Bombay “Tata Institute of Fundamental Research “ on transformation
groups. In particular in Chap. 6, Koszul studied discrete linear groups acting on
convex open cones in vector spaces based on the work of C.L. Siegel (work on
quadratic forms [48]). Koszul usedwhat Iwill call in the followingKoszul-Vinberg
characteristic function on convex sharp cone.

• «Déformations des variétés localement plates» [49] of 1968. Koszul provided
other proofs of theorems introduced in [41]. Koszul considered related differ-
entiable manifolds of dimension n and TM the fibered space of M. The linear
connections on M constitute a subspace of the space of the differentiable appli-
cations of the TMxTM fiber product in the space T(TM) of the TM vectors. Any
locally flat connection D (the curvature and the torsion are zero) defines a locally
flat connection on the covering of M, and is hyperbolic when universal covering
of M, with this connection, is isomorphic to a sharp convex open domain (without
straight lines) in Rn. Koszul showed that, if M is a compact manifold, for a locally
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flat connection onM to be hyperbolic, it is necessary and sufficient that there exists
a closed differential form of degree 1 on M whose covariant differential is positive
definite.

• «TrajectoiresConvexes deGroupesAffinesUnimodulaires» [50] in 1970 .Koszul
demonstrated that a convex sharp open domain inRn that admits a unimodular tran-
sitive group of affine automorphisms is an auto-dual cone. This is amore geometric
demonstration of the results shown by Ernest Vinberg [29] on the automorphisms
of convex cones.

The elementary geometric structures discovered by Jean-Louis Koszul are the
foundations of InformationGeometry. These links were first established by Professor
Hirohiko Shima [51–56]. These links were particularly crystallized in Shima book
2007 “The Geometry of Hessian Structures” [57], which is dedicated to Professor
Koszul. The origin of this work followed the visit of Koszul in Japan in 1964, for
a mission coordinated with the French government. Koszul taught lectures on the
theory of flat manifolds at Osaka University. Hirohiko Shima was then a student and
attended these lectures with the teachers Matsushima and Murakami. This lecture
was at the origin of the notion of Hessian structures and the beginning of the works
of Hirohiko Shima. Henri Cartan noted concerning Koszul’s ties with Japan, “Koszul
has attracted eminent mathematicians from abroad to Strasbourg and Grenoble. I
would like to mention in particular the links he has established with representatives
of the Japanese School of Differential Geometry”. Shima’s book [57] is a systematic
introduction to the theory ofHessian structures (provided by a pair of a flat connection
D and an Hessian metric g). Koszul studied flat manifolds with a closed 1-form α,
such that Dα be positive definite, where Dα is a hessian metric. However, not all
Hessian metrics are globally of the form g�Dα. Shima introduces the notion of
Codazzi structure for a pair (D,g), with D a torsion-free connection, which verifies
theCodazzi equation (DX g)(Y, Z) � (DY g)(X, Z ). AHessian structure is aCodazzi
structure forwhich connectionD is flat. This is an extension ofRiemannian geometry.
It is then possible to define a connection D’ and a dual Codazzi structure (D’,g)
with D′ � ∇ − D where ∇ is the Levi-Civita connection. For a hessian structure
(D, g) with g � Ddϕ, the dual Codazzi structure

(
D′, g

)
is also a Hessian structure

and g � D′dϕ′, where ϕ′ is the Legendre transform of ϕ : ϕ′ � ∑

i
x i ∂ϕ

∂xi − ϕ.

Shima observed that Information Geometry framework could be introduced by dual
connections, and not only foundedonFréchet, Rao andChentsovworks [5].Ahessian
structure (D, g) is of Koszul type, if there is a closed 1-form ω as g � Dω. Using D
and the volume element of g, Koszul introduced a 2nd form, which plays a similar
role to the Ricci tensor for a Kählerian metric. Let υ be the volume element of g,
we define a closed 1-form α such that DXυ � α(X )υ and a symmetric bilinear form
γ � Dα. In the following, α and γ forms are called 1st and 2nd form of Koszul
for Hessian structure (D, g). We can consider the forms associated with the Hessian
dual structure (D′, g) by α′ � −α and γ ′ � γ −2∇α. In the case of a homogeneous
regular convex cone �, with D the canonical flat connection of the ambient vector
space, the Koszul forms α and γ for the canonical Hessian structure (D, g � Ddψ)
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Fig. 3 From left to right, Jean-LouisKoszul, Hirohiko Shima andMichelNguiffoBoyomatGSI’13
(Geometric Science of Information) conference at the École des Mines of Paris in August 2013

are given by α � d logψ and γ � g. The volume element υ determined by g is
invariant under the action of the group of automorphisms G of �.

Jean-Louis Koszul attended the 1st GSI “Geometric Science of Information” con-
ference in August 2013 at the Ecole des Mines in Paris, where he attended the
presentation of Hirohiko Shima, given for his honor on the topic “Geometry of Hes-
sian Structures “ [58]. In the photo below, we can see from left to right, Jean-Louis
Koszul, Hirohiko Shima and Michel Nguiffo Boyom. Professor Michel Boyom has
extensively studied and developed, at the University of Montpellier, Koszul mod-
els [59–66] in relation to symplectic flat affine manifolds and to the cohomology of
Koszul-Vinberg algebras (KVCohomology). Professor Boyomwith his PhD student
Byande [67, 68] have explored other links with Information Geometry. André Lich-
nerowicz worked in parallel on a closed topic about homogeneous Kähler manifolds
[69] (Fig. 3).

2 Biographical Reminder of Jean-Louis Koszul Scientific
Life

Jean Louis André Stanislas Koszul born in Strasbourg in 1921, is the child of a family
of four (with three older sisters, Marie Andrée, Antoinette and Jeanne). He is the
son of André Koszul (born in Roubaix on November 19th 1878, professor at the
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Strasbourg university), and Marie Fontaine (born in Lyon on June 19th 1887), who
was a friend of Henri Cartan’s mother. Henri Cartan writes on this friendship “My
mother in her youth, had been a close friend of the one who was to become Jean-
Louis Koszul’s mother” [70]. His paternal grandparents were Julien Stanislas Koszul
and Hélène Ludivine Rosalie Marie Salomé. He attended high school in Fustel-de-
Coulanges in Strasbourg and the Faculty of Science in Strasbourg and in Paris. He
entered ENS Ulm in the class of 1940 and defended his thesis with Henri Cartan.
Henri Cartan noted “This promotion included other mathematicians like Belgodère
or Godement, and also physicists and some chemists, like Marc Julia and Raimond
Castaing” [70] (for the anecdote, the maiden name of my wife Anne, is Belgodère,
with a filial link with Paul Belgodère of the Koszul ENS promotion). Jean-Louis
Koszul married on July 17th 1948 with Denise Reyss-Brion, student of ENS Sèvres,
entered in 1941. They have three children, Michel (married to Christine Duchemin),
Anne (wife of Stanislas Crouzier) and Bertrand. He then taught in Strasbourg and
was appointed Associate Professor at the University of Strasbourg in 1949, and
had for colleagues R. Thom, M. Berger and B. Malgrange. He was promoted to
professor status in 1956. He became a member of Bourbaki with the 2nd generation,
J. Dixmier, R. Godement, S. Eilenberg, P. Samuel, J. P. Serre and L. Schwartz. Henri
Cartan remarked in [70] “In the vehement discussions within Bourbaki, Koszul was
not one of those who spoke loudly; but we learned to listen to him because we knew
that if he opened his mouth he had something to say”. About this Koszul’s period at
Strasbourg University, Pierre Cartier [71] said “When I arrived in Strasbourg, Koszul
was returning from a year spent in Institute for Advanced Studies in Princeton, and he
was after the departure of Ehresman and Lichnerowicz to Paris the paternal figure of
the Department of Mathematics (despite his young age). I am not sure of his intimate
convictions, but he represented for me a typical figure of this Alsatian Protestantism,
which I frequented at the time. He shared the seriousness, the honesty, the common
sense and the balance. In particular, he knew how to resist the academic attraction
of Paris. He left us after 2 years to go to Grenoble, in a maneuver uncommon at the
time of exchange of positions with Georges Reeb”. He became Senior Lecturer at the
University of Grenoble in 1963, and then an honorary professor at the Joseph Fourier
University [72] and integrated in Fourier Institute led by C. Chabauty. During this
period, B. Malgrange [73] remembered Koszul seminar on “algebra and geometry”
with his three students J. Vey, D. Luna and J. Helmstetter. In Grenoble, he practiced
mountaineering and was a member of the French Alpine Club. Koszul was awarded
by Jaffré Prize in 1975 and was elected correspondent at the Academy of Sciences
on January 28th 1980. Koszul was one of the CIRM conference center founder at
Luminy. The following year, hewas elected to theAcademy of São Paulo. Jean-Louis
Koszul died on January 12th 2018, at the age of 97.

As early as 1947, Jean-Louis Koszul published three articles in CRAS of the
Academy of Sciences, on the Betti number of a simple compact Lie group, on coho-
mology rings, generalizing ideas of Jean-Leray, and finally on the homology of
homogeneous spaces. Koszul’s thesis, defended in June 10th 1949 under the direc-
tion of Henri Cartan, dealt with the homology and cohomology of Lie algebras [74].
The jury was composed of M. Denjoy (President), J. Leray, P. Dubreil and H. Cartan.
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Fig. 4 Cover page of
Koszul’s PhD report
defended June 10th 1949
with a Jury composed of
Professors Arnaud Denjoy,
Henri Cartan, Paul Dubreil
and Jean Leray, published in
[74]

Under the title “Works of Koszul I, II and III”, Henri Cartan reported Koszul’s PhD
results to Bourbaki seminar [75–77]. See also, André Haefliger paper [78] (Fig. 4).

In 1987, an International Symposium on Geometry was held in Grenoble in honor
of Jean-Louis Koszul, whose proceedingswere published in “les Annales de l’Institut
Fourier”, Volume 37, No. 4. This conference began with a presentation by Henri
Cartan, who remembered the mention given to Koszul for his aggregation [70]:
“Distinguished Spirit; he is successful in his problems. Should beware, orally, of
overly systematic trends. A little less subtle complications, baroque ideas, a little
more common sense and balance would be desirable”. About his supervision of
Koszul’s PhD, Henri Cartan writed “Why did he turn to guide him (so-called)? Is it
because he found inspiration in Elie Cartan’s work on the topology of Lie groups?
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Perhaps he was surprised to note that mathematical knowledge is not necessarily
transmitted by descent. In any case, he helped me to better know what my father
had brought to the theory” [70]. On the work of Koszul algebrisation, Henri Cartan
notes “ Koszul was the first to give a precise algebraic formalization of the situation
studied by Leray in his 1946 publication, which became the theory of the spectral
sequence. It took a good deal of insight to unravel what lay behind Leray’s study.
In this respect, Koszul’s Note in the July 1947 CRAS is of historical significance.”
[70]. From June 26th to July 2nd 1947, CNRS, received an International conference
in Paris, on “Algebraic Topology”. This was the first postwar international diffusion
of Leray’s ideas. Koszul writes about this lecture “I can still see Leray putting his
chalk at the end of his talk by saying (modestly?) that he definitely did not understand
anything about Algebraic Topology”. In writing his lectures at the Collège de France,
Leray adopted the algebraic presentation of the spectral suite elaborated by Koszul.
As early as 1950, J.P. Serre used the term “Leray-Koszul suite”. Speaking of Leray,
Koszul wrote “around 1955 I remember asking him what had put him on the path
of what he called the ring of homology of a representation in his Notes to the CRAS
of 1946. His answer was Künneth’s theorem; I could not find out more”. The sheaf
theory, introduced by Jean-Leray, followed in 1947, at the same time as the spectral
sequences.

In 1950, Koszul published an important book of 62 pages entitled “Homology
and Cohomology of Lie Algebras” [74] based on his PhD work, in which he studied
the links between homology and cohomology (with real coefficients) of a compact
connected Lie group and purely algebraic problems of Lie algebra. Koszul then gave
a lecture in São Paulo on the topic “sheaves and cohomology”. The superb lecture
notes were published in 1957 and dealt with the cohomology of Čech with coeffi-
cients in a sheaf. In the autumn of 1958, he again organized a series of seminars in
São Paulo, this time on symmetric spaces [16]. R. Bott commented on these seminars
“very pleasant. The pace is fast, and the considerable material is covered elegantly.
In addition to the more or less standard theorems on symmetric spaces, the author
discusses the geometry of geodesics, Bergmann’s metrics, and finally studies the
bounded domains with many details”. In the mid-1960s, Koszul taught at the Tata
Institute in Bombay on transformation groups [47] and on fiber bundles and differ-
ential geometry. The second lecture dealt with the theory of connections and the
lecture notes were published in 1965. In 1986 he published “Introduction to sym-
plectic geometry” [18] following a Chinese course in China (with the agreement of
Jean-Louis Koszul given in 2017, this lecture given at the University of Nanjing will
be translated into English by Springer and will be published in 2018). This book
takes up and develops works of Jean-Marie Souriau [17, 79] on homogeneous sym-
plectic manifolds and the affine representation of Lie algebras and Lie groups in
geometric mechanics (another fundamental source of Information Geometry struc-
tures extended on homogeneous varieties [80–84]). Chuan YuMa writes in a review,
on this latest book inChinese, that “This work coincided with developments in the field
of analytical mechanics. Many new ideas have also been derived using a wide variety
of notions of modern algebra, differential geometry, Lie groups, functional analysis,
differentiable manifolds, and representation theory. [Koszul’s book] emphasizes the
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differential-geometric and topological properties of symplectic manifolds. It gives a
modern treatment of the subject that is useful for beginners as well as for experts”.

In 1994, in [21], a comment by Koszul explains the problems he was preoccupied
with when he invented what is now called the “Koszul complex”. This was introduced
to define a theory of cohomology for Lie algebras and proved to be a general structure
useful in homological algebra.

3 Koszul-Vinberg Characteristic Function, Koszul Forms
and Maximum Entropy Density

Through the study of the geometry of bounded homogeneous domains initiated by
Elie Cartan [37, 85], Jean-Louis Koszul discovered that the elementary structures
are associated with Hessian manifolds on sharp convex cones [15, 16, 41, 45–47, 49,
50]. In 1935, Elie Cartan proved in [37] that the symmetric homogeneous irreducible
bounded domains could be reduced to 6 classes, 4 canonicalmodels and 2 exceptional
cases. Ilya Piatetski-Shapiro [31–35], after Luogeng Hua [86], extended Siegel’s
description [44, 48] to other symmetric spaces, and showed by a counterexample
that Elie Cartan’s conjecture, that all transitive domains are symmetrical, was false.
At the same time, Ernest B. Vinberg [23–30] worked on the theory of homogeneous
convex cones and the construction of Siegel domains [44, 48]. More recently, the
classical complex symmetric spaceswere studied by F. Berezin [87, 88] in the context
of quantification. In parallel, O.S. Rothaus [89] and Piatetski-Shapiro [31–35] with
Karpelevitch, explored the underlying geometry of these complexes homogeneous
fields, and more particularly the fibration areas on the components of the shilov
boundary. In Italy, I note the work of E. Vessentini [90] and U. Sampieri [91, 92].
The Siegel domains, which fit into these classes of structures, nowadays play an
important role in the processing of radar spatio-temporal signals and, more broadly,
in learning from structured covariance matrices.

Jean-Louis Koszul and Ernest B. Vinberg have introduced a hessian metric invari-
ant by the group of linear automorphisms on a sharp convex cone� through a func-
tion, called characteristic function ψ . In the following � is a sharp convex cone in
a vector space E of finite size on R (a convex cone is sharp if there is no straight
lines). In dual space E∗ of E,�∗ is the set of linear strictly positive forms on�−{0}
. �∗, dual cone of �, is also a sharp convex cone. If ξ ∈ �∗, then intersection
�∩ {x ∈ E/〈x, ξ 〉 � 1} is bounded. G � Aut(�) is the group of linear transforma-
tion from E that preserves � (group of automorphisms). G � Aut(�) acts on �*
such that, ∀g ∈ G � Aut(�),∀ξ ∈ E∗ then ḡ.ξ � ξ ◦ g−1. Koszul introduce an
integral, of Laplace kind, on sharp dual convex cone, as:
Koszul-Vinberg Characteristic definition:
Let dξ Lebesque measure on E∗, following integral:



Jean-Louis Koszul and the Elementary Structures … 345

ψ�(x) �
∫

�∗

e−〈ξ,x〉dξ ∀x ∈ � (1)

with �* the dual cone, is analytical function on �, with ψ�(x) ∈ ]0,+∞[, called
Koszul-Vinberg characteristic function of cone �.

Nota: the logarithm of the characteristic function is called«barrier function» for
convex optimization algorithms. Yurii Nesterov and Arkadii Nemirovskii [93]
have proved in modern theory of« interior point » , using function �(x) �
log(voln{s ∈ �∗/〈s, x〉 ≤ 1}), that all convex cones in Rn have a self-dual barrier,
linked with Koszul characteristic function.

Koszul-Vinberg Characteristic function has the following properties:

• Bergman kernel of�+ i Rn+1 is written K�(Re(z)) up to a constant. K� is defined
by integral:

K�(x) �
∫

�∗

e−〈ξ,x〉ψ�∗ (ξ )−1dξ (2)

• ψ� is an analytical function defined in the interior of � and ψ�(x) → +∞ when
x → ∂�. If g ∈ Aut(�) thenψ�(gx) � |det g|−1ψ�(x) and as t I ∈ G � Aut(�)
for all t > 0, we have:

ψ�(t x) � ψ�(x)/tn (3)

• ψ� is strictly log convex, such that φ�(x) � log(ψ�(x)) is strictly convex.

From this characteristic function, Koszul introduced two forms:
1st Koszul form α : Differential 1-form

α � dφ� � d logψ� � dψ�/ψ� (4)

is invariant with respect to all automorphisms G � Aut(�) of �. If x ∈ � and
u ∈ E then:

〈αx , u〉 � −
∫

�∗

〈ξ, u〉.e−〈ξ,x〉dξ andαx ∈ −�∗ (5)

and
2nd Koszul form γ: Differential symmetric 2-form

γ � Dα � Dd logψ� (6)

is a bilinear symmetric positive definite form invariant with respect to the action of
G � Aut(�) and Dα > 0
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Positivity is given by Schwarz inequality and:

Dd logψ�(u, v) �
∫

�∗

〈ξ, u〉〈ξ, v〉e−〈ξ,u〉dξ (7)

Koszul has proved that from this 2nd form, we can introduce an invariant Rie-
mannian metric with respect to the action of cone automorphisms:
Koszul Metric: Dα defines a Riemannian invariant structure by Aut(�), and the
Riemannian metric is given by:

g � Dd logψ� (8)

(Dd logψ(x))(u) � 1

ψ(u)2

⎡

⎣
∫

�∗

F(ξ )2dξ.
∫

�∗

G(ξ )2dξ −
⎛

⎝
∫

�∗

F(ξ ).G(ξ )dξ

⎞

⎠

2⎤

⎦ > 0

with F(ξ ) � e− 1
2 〈x,y〉 and G(ξ ) � e− 1

2 〈x,ξ 〉〈u, ξ 〉 (9)

The positivity could be proved by using Schwarz inequality, and the follow-
ing properties for the derivative given by d logψ � dψ

ψ
and Dd logψ �

Ddψ
ψ

−
(

dψ
ψ

)2
where (dψ(x))(u) � − ∫

�∗
e−〈x,ξ 〉〈u, ξ 〉dξ and (Ddψ(x))(u) �

− ∫

�∗
e−〈x,ξ 〉〈u, ξ 〉2dξ .

Koszul uses this diffeomorphism to define dual coordinates:

x∗ � −αx � −d logψ�(x) (10)

with 〈d f (x), u〉 � Du f (x) � d
dt

∣
∣
t�0

f (x + tu). When the cone � is symmetric, the
map x �→ x∗ � −αx is a bijection and an isometry with only one fixed point (the
manifold is a symmetric Riemannian space given by its isometry):

(x∗)∗ � x,
〈
x, x∗〉 − n etψ�(x)ψ�∗ (x∗) � cste (11)

x∗ is characterized by x∗ � arg min{ψ(y)/y ∈ �∗, 〈x, y〉 � n} and x∗ is the gravity
center of the transverse cut {y ∈ �∗, 〈x, y〉 � n} of �∗:

x∗ �
∫

�∗

ξ.e−〈ξ,x〉dξ/
∫

�∗

e−〈ξ,x〉dξ

and
〈−x∗, h

〉 � dh logψ�(x) � −
∫

�∗

〈ξ, h〉e−〈ξ,x〉dξ/
∫

�∗

e−〈ξ,x〉dξ (12)

In [94–97], Misha Gromov was interested by these structures. If we set �(x) �
− logψ�(x), Gromov has observed that x∗ − d�(x) is an injection where the image
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Fig. 5 Legendre transform and Plücker geometry

closure is equal to the convex envelop of the support and the volume of this envelop
is the n-dimensionnel volume defined by the integral of hessian determinant of this
function, �(x), where the map � �→ M(�) � ∫

�

det(Hess(�(x))).dx obeys a non-

trivial inequality given by Brunn-Minkowsky:

[M(�1 +�2)]
1/2 ≥ [M(�1)]

1/n + [M(�2)]
1/n (13)

These relations appear also in statistical physics. As the physicist Jean-Marie
Souriau [17, 80–84, 98] did, it is indeed possible to define the concept of Shan-
non’s Entropy via the Lengendre transform associated with the opposite of the loga-
rithm of this Koszul-Vinberg characteristic function. Taking up the seminal ideas of
François Massieu [99–102] in Thermodynamics (classmate of the Corps des Mines,
it is François Massieu who influenced Henri Poincaré [103] who introduced the
characteristic function in Probability, with a Laplace transform, and not a Fourier
transform as did then Paul Levy), which were recently developed by Roger Balian in
Quantum Physics [19, 20, 104–111], replacing Shannon Entropy by von Neumann
Entropy. I will also note the work of Jean-Leray on the extensions of the Laplace
transform in [112]. Starting from the characteristic function of Koszul-Vinberg, it is
thus possible to introduce an entropy of Koszul defined as the Legendre transform
of this function, which is the opposite of the logarithm of the characteristic function
of Koszul-Vinberg (a logarithm lies the characteristic function of Massieu and the
characteristic function of Koszul or Poincaré). Starting from the Koszul function, its
Legendre transform gives a dual potential function in the dual coordinate system.x∗
(Fig. 5):

�∗(x∗) � 〈
x, x∗〉 −�(x) with x∗ � Dx� and x � Dx∗�∗ where�(x) � − logψ�(x) (14)

Concerning the Legendre transform [113], Darboux gives in his book an interpre-
tation of Chasles: “What comes back according to a remark of M. Chasles, to replace
the surface with its polar reciprocal with respect to a paraboloid”. We have the same
reference to polar reciprocal in “Lessons on the calculus of variations” by Jacques
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Fig. 6 Legendre-Clairaut equation in 1943 Fréchet’s paper

Hadamard, written by Maurice Fréchet (student of Hadamard), with references to
M.E. Vessiot, which uses the “figuratrice”, as polar reciprocal of the “figurative”.

It is possible to express this Legendre transform only from the dual coordinate
system x∗, using that x � Dx∗�∗. We then obtain the Clairaut equation:

�∗(x∗) − 〈
(Dx�)−1(x∗), x∗〉 −�

[
(Dx�)−1(x∗)

]∀x∗ ∈ {Dx�(x)/x ∈ �} (15)

This equation was discovered by Maurice Fréchet in his 1943 paper [3] (see also
in the appendix), in which he introduced for the first time the bound on the variance of
any statistical estimator via the Fisher matrix, wrongly attributed to Cramer and Rao
[4]. Fréchet was looking for “distinguished densities” [98], densities whose covari-
ance matrix of the estimator of these parameters reaches this bound. Fréchet there
showed that these densities were expressed while using this characteristic function
�(x), and that these densities belong to the exponential densities family (Fig. 6).

Apparently, this discovery by Fréchet dates from winter of 1939, because Fréchet
writes at the bottom of the page [3] “The content of this dissertation formed part of
our mathematical statistics Lecture at the Institut Henri Poincaré during the winter
of 1939–1940. It is one of the chapters of the second edition (in preparation) of our ‘
Lessons in Mathematical Statistics’, the first of which is ‘Introduction: Preliminary
Lecture on the Probability Calculation’ (119 pages in quarto, typed in) has just
been published at the University Documentation Center, Tournaments and Constans.
Paris”. More details are given in appendix.

More recently Muriel Casalis [114, 115], the PhD student of Gérard Letac [116],
has studied in her PhD, invariance of probability densities with respect to the affine
group, and the links with densities of exponential families.

To make the link between the characteristic function of Koszul-Vinberg and
Entropy of Shannon, we will detail the formulas of Koszul in the following devel-
opments. Using the fact that −〈ξ, x〉 � log e−〈ξ,x〉, we can write:

−〈
x∗, x

〉 �
∫

�∗

log e−〈ξ,x〉.e−〈ξ,x〉dξ/
∫

�∗

e−〈ξ,x〉dξ (16)

and then developing the Legendre transform to make appear the density of maximum
entropy in �∗(x∗), and also the Shannon entropy:
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�∗(x∗) � 〈
x, x∗〉 −�(x) � −

∫

�∗
log e−〈ξ,x〉.e−〈ξ,x〉dξ/

∫

�∗
e−〈ξ,x〉dξ + log

∫

�∗
e−〈ξ,x〉dξ

�∗(x∗) �
⎡

⎣

⎛

⎝
∫

�∗
e−〈ξ,x〉dξ

⎞

⎠. log
∫

�∗
e−〈ξ,x〉dξ −

∫

�∗
log e−〈ξ,x〉.e−〈ξ,x〉dξ

⎤

⎦/

∫

�∗
e−〈ξ,x〉dξ

�∗(x∗) �
⎡

⎢
⎣log

∫

�∗
e−〈ξ,x〉dξ −

∫

�∗
log e−〈ξ,x〉. e−〈ξ,x〉

∫

�∗
e−〈ξ,x〉dξ dξ

⎤

⎥
⎦

�∗(x∗) �
⎡

⎢
⎣log

∫

�∗
e−〈ξ,x〉dξ .

⎛

⎜
⎝

∫

�∗

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ dξ

⎞

⎟
⎠ −

∫

�∗
log e−〈ξ,x〉. e−〈ξ,x〉

∫

�∗
e−〈ξ,x〉dξ dξ

⎤

⎥
⎦

with
∫

�∗

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ dξ � 1

�∗(x∗) �
⎡

⎢
⎣−

∫

�∗

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ . log

⎛

⎜
⎝

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ

⎞

⎟
⎠dξ

⎤

⎥
⎦ (17)

In this last equation, px (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ plays the role of maximum

entropy density as introduced by Jaynes [117–119] (also called, Gibbs density in
Thermodynamics). I call the associated entropy, Koszul Entropy:

�∗ � −
∫

�∗

px (ξ ) log px (ξ )dξ (18)

with

px (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ � e

−〈x,ξ 〉−log
∫

Ω∗
e−〈ξ,x〉dξ

� e−〈x,ξ 〉+Φ(x)and x∗ �
∫

�∗
ξ.px (ξ )dξ

(19)

This Koszul density px (ξ ) � e−〈ξ,x〉
∫

Ω∗
e−〈ξ,x〉dξ help us to develop the log likelihood:

log px (ξ ) � −〈x, ξ 〉 − log
∫

Ω∗

e−〈ξ,x〉dξ � −〈x, ξ 〉 +Φ(x) (20)

and deduce from the expectation:

Eξ

[− log px (ξ )
] � 〈

x, x∗〉 −Φ(x) (21)

We also obtain the equation about normalization:
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�(x) � − log
∫

�∗
e−〈ξ,x〉dξ � − log

∫

�∗
e−[�∗(ξ )+�(x)]dξ � �(x) − log

∫

�∗
e−�∗(ξ )dξ

⇒
∫

�∗
e−�∗(ξ )dξ � 1 (22)

But we have to make appear the variable x∗ in �∗(x∗). We have then to write:

log px (ξ ) � log e−〈x,ξ 〉+�(x) � log e−�∗(ξ ) � −�∗(ξ )

⇒ �∗ � −
∫

�∗

px (ξ ) log px (ξ )dξ �
∫

�∗

�∗(ξ )px (ξ )dξ � �∗(x∗) (23)

Last equality is true, if we have:

∫

�∗

�∗(ξ )px (ξ )dξ −�∗
⎛

⎝
∫

�∗

ξ.px (ξ )dξ

⎞

⎠with x∗ �
∫

�∗

ξ.px (ξ )dξ (24)

This last relation is associated to classical Jensen inequality. Equality is obtained
for Maximum Entropy density for x∗ � Dx� [120]:

Legendre - Moreau Transform: �∗(x∗) � Sup
x

[〈
x, x∗〉 −�(x)

]

⇒
⎧
⎨

⎩

�∗(x∗) ≥ 〈x, x∗〉 −�(x)

�∗(x∗) ≥ ∫

�∗
�∗(ξ )px (ξ )dξ ⇒

⎧
⎨

⎩

�∗(x∗) ≥ E
[
�

∗
(ξ )

]

equality if x∗ � d�
dx

(25)

We obtain for the maximum entropy density, the equality:

E
[
�∗(ξ )

] � �∗(E[ξ ]), ξ ∈ �∗ (26)

To make the link between this Koszul model and maximum entropy density
[121–123] introduced by Jaynes [117–119], I use previous notation and I look for the
density px (ξ ) that is the solution to this maximum entropy variational problem. Find
the density that maximizes the Shannon entropy with constraint on normalization
and on the knowledge of first moment:

Max
px (.)

⎡

⎣−
∫

�∗

px (ξ ) log px (ξ )dξ

⎤

⎦ such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

�∗

px (ξ )dξ � 1

∫

�∗

ξ.px (ξ )dξ � x∗
(27)
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If we consider the density qx (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ � e

−〈x,ξ 〉−log
∫

Ω∗
e−〈ξ,x〉dξ

such that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

Ω∗
qx (ξ ).dξ � ∫

Ω∗
e−〈ξ,x〉dξ/

∫

Ω∗
e−〈ξ,x〉dξ � 1

log qx (ξ ) � log e
−〈x,ξ 〉−log

∫

Ω∗
e−〈ξ,x〉dξ � −〈x, ξ 〉 − log

∫

�∗
e−〈x,ξ 〉dξ

(28)

By using the inequality log x ≥ (
1 − x−1

)
with equality if x � 1, we can then

write that:

−
∫

�∗

px (ξ ) log
px (ξ )

qx (ξ )
dξ ≤ −

∫

�∗

px (ξ )

(

1 − qx (ξ )

px (ξ )

)

dξ (29)

We develop the right term of the equation:
∫

�∗

px (ξ )

(

1 − qx (ξ )

px (ξ )

)

dξ �
∫

�∗

px (ξ )dξ −
∫

�∗

qx (ξ )dξ � 0 (30)

knowing that
∫

�∗
px (ξ )dξ � ∫

�∗
qx (ξ )dξ � 1, we can deduce that:

−
∫

�∗
px (ξ ) log

px (ξ )

qx (ξ )
dξ ≤ 0 ⇒ −

∫

�∗
px (ξ ) log px (ξ )dξ ≤ −

∫

�∗
px (ξ ) log qx (ξ )dξ (31)

We have then to develop the right term by using previous expression of qx (ξ ):

−
∫

�∗

px (ξ ) log px (ξ )dξ ≤ −
∫

�∗

px (ξ )

⎡

⎣−〈x, ξ 〉 − log
∫

�∗

e−〈x,ξ 〉dξ

⎤

⎦dξ (32)

−
∫

�∗

px (ξ ) logpx (ξ )dξ ≤
〈

x,
∫

�∗

ξ.px (ξ )dξ

〉

+ log
∫

�∗

e−〈x,ξ 〉dξ (33)

If we use that x∗ � ∫

�∗
ξ.px (ξ )dξ and �(x) � − log

∫

�∗
e−〈x,ξ 〉dξ , then we obtain

that the density qx (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ � e

−〈x,ξ 〉−log
∫

Ω∗
e−〈ξ,x〉dξ

is the maximum

entropy density constrained by
∫

�∗
px (ξ )dξ and

∫

�∗
ξ.px (ξ )dξ � x∗:

−
∫

�∗

px (ξ ) log px (ξ )dξ ≤ 〈
x, x∗〉 −�(x) (34)
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−
∫

�∗

px (ξ ) log px (ξ )dξ ≤ �∗(x∗) (35)

In the following, we will write x∗ � ξ̂ , to give to this variable the link with
momentum ξ̂ � ∫

�∗
ξ.pξ̂ (ξ )dξ . To express the density with respect to the 1st moment

as variable, we have to inverse ξ̂ � (x) � d�(x)
dx , by writting x � −1(ξ̂ ) the

inverse function (given by Legendre transform):

pξ̂ (ξ ) � e
−
〈
ξ,−1(ξ̂ )

〉

∫

Ω∗
e
−
〈
ξ,−1(ξ̂ )

〉

dξ
with ξ̂ �

∫

�∗

ξ.pξ̂ (ξ )dξ and�(x) � − log
∫

�∗

e−〈x,ξ 〉dξ

(36)

We find finally the Maximum entropy density parametrized by 1st moment ξ̂ .

4 Links Between Koszul-Vinberg Characteristic Function,
Koszul Forms and Information Geometry

Koszul Hessian Geometry Structure is the key tool to define elementary struc-
tures of Information Geometry, that appears as one particular case of more gen-
eral framework studied by Koszul. In the Koszul-Vinberg Characteristic function
ψ�(x) � ∫

�∗
e−〈x,ξ 〉dξ, ∀x ∈ �where� is a sharp convex cone and�* its dual cone,

the duality bracket< .,. >has to be defined. I will introduce it by using Cartan-Killing
form 〈x, y〉 � −B(x, θ (y)) with B(., .) killing form and θ (.) Cartan involution. The
inner product is then invariant with respect to automorphims of cone �. Koszul-
Vinberg characteristic function could be developed as [124]:

ψ�(x + λu) � ψ�(x) − λ
〈
x∗ + u

〉
+
λ2

2
〈K (x)u, u〉 + . . . (37)

with x∗ � d�(x)
dx ,�(x) � − logψ�(x) and K (x) � d2�(x)

dx2

In the following developments, I will write β, previous variable written x , because
in thermodynamics, this variable corresponds to the Planck temperature, classically
β � 1

T . The variable β will be the dual variable of ξ̂ .
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pξ̂ (ξ ) � e
−
〈
−1(ξ̂ ),ξ

〉

∫

�∗
e
−
〈
−1(ξ̂ ),ξ

〉

.dξ
ξ̂ � (β) � ∂�(β)

∂β
with�(β) � − logψ�(β)

ψ�(β) �
∫

�∗

e−〈β,ξ 〉dξ, S(ξ̂ ) � −
∫

�∗

pξ̂ (ξ ) log pξ̂ (ξ ).dξ andβ � −1(ξ̂ )

S(ξ̂ ) �
〈
ξ̂ , β

〉
−�(β) (38)

Inversion of the function (.) is given by β � −1(ξ̂ ) is achieved by Legendre
transform using relation between Entropy S(ξ̂ ) and the function �(β) (opposite of
the logarithm of the Koszul-Vinberg characteristic function):

S(ξ̂ ) �
〈
β, ξ̂

〉
−�(β)

with �(β) � − log
∫

�∗

e−〈ξ,β〉dξ ∀β ∈ � and ∀ξ, ξ̂ ∈ �∗ (39)

We will prove that the 2nd Koszul form − ∂2�(β)
∂β2 is linked with Fisher Metric of

Information Geometry:

I (β) � −E

[
∂2 log pβ(ξ )

∂β2

]

(40)

To compute the Fisher metric I (β), we use the following relations between vari-
able

⎧
⎪⎨

⎪⎩

log pξ̂ (ξ ) � −〈ξ, β〉 +�(β)

S(
�

ξ ) � − ∫

�∗
pξ̂ (ξ ). log pξ̂ (ξ ).dξ � −E

[
log pξ̂ (ξ )

]

⇒ S(
�

ξ ) � 〈E[ξ ], β〉 −�(β) �
〈
ξ̂ , β

〉
−�(β) (41)

We can observe that the logarithm of the density is affine with respect to the
variable β, and that the Fisher matrix is given by the hessian. We can then deduce
that the Fisher Metric is given by the hessian.

I (β) � −E

[
∂2 log pβ (ξ )

∂β2

]

� −E

[
∂2(−〈ξ, β〉 +�(β))

∂β2

]

� − ∂2�(β)

∂β2
� ∂2 logψΩ (β)

∂β2
(42)

We can also identify the Fisher metric as a variance:

logΨΩ (β) � log
∫

Ω∗
e−〈ξ,β〉dξ ⇒ ∂ logΨΩ (β)

∂β
� − 1

∫

Ω∗
e−〈ξ,β〉dξ

∫

Ω∗
ξ.e−〈ξ,β〉dξ (43)



354 F. Barbaresco

∂2 logΨΩ (β)

∂β2 � − 1
(
∫

Ω∗
e−〈ξ,β〉dξ

)2

⎡

⎢
⎣−

∫

Ω∗
ξ2.e−〈ξ,β〉dξ.

∫

Ω∗
e−〈ξ,β〉dξ +

⎛

⎝
∫

Ω∗
ξ2.e−〈ξ,β〉dξ

⎞

⎠

2
⎤

⎥
⎦ (44)

∂2 logΨΩ (β)

∂β2 �
∫

Ω∗
ξ2.

e−〈ξ,β〉
∫

Ω∗
e−〈ξ,β〉dξ

dξ −
⎛

⎜
⎝

∫

Ω∗
ξ.

e−〈ξ,β〉
∫

Ω∗
e−〈ξ,β〉dξ

dξ

⎞

⎟
⎠

2

�
∫

Ω∗
ξ2.pβ (ξ )dξ −

⎛

⎝
∫

Ω∗
ξ.pβ (ξ )dξ

⎞

⎠

2

(45)

I (β) � −Eξ

[
∂2 log pβ (ξ )

∂β2

]

� ∂2 logψ�(β)

∂β2 � Eξ

[
ξ2
] − Eξ

[
ξ2
] � V ar (ξ ) (46)

In 1977, Crouzeix [125, 126] has identified the following relation between both

hessian of entropy and characteristic function ∂2�
∂β2 �

[
∂2S
∂ξ̂ 2

]−1
giving a relation

between the dual metrics with respect to their dual coordinate systems. The met-
ric could be given by Fisher metric or given by the hessian of Entropy S:

ds2g � dβT I (β)dβ �
∑

i j

gi j dβi dβ j with gi j � [I (β)]i j (47)

Thanks to Crouzeix relation [125] [126], we observe that 2 geodesic distances
given by hessian of dual potential functions in dual coordinates systems, are equal:

ds2h � d ξ̂ T

[
∂2S(ξ̂ )

∂ξ̂ 2

]

d ξ̂ �
∑

i j

hi j d ξ̂i d ξ̂ j with hi j �
[
∂2S(ξ̂ )

∂ξ̂ 2

]

i j

(48)

ds2h � ds2g (49)

One can ask oneself the question of what is the most natural product of duality.
This question has been treated by Elie Cartan in his thesis in 1894, by introducing
a form called Cartan-Killing form, a symmetric bilinear form naturally associated
with any Lie algebra. This form of Cartan-Killing is defined via the endomorphism
adx of Lie algebra g via the Lie bracket:

adx (y) � [x, y] (50)

The trace of the composition of these 2 endomorphisms defines this bilinear form
by:

B(x, y) � T r
(
adx ady

)
(51)

The Cartan-Killing form is symmetric:

B(x, y) � B(y, x) (52)
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and verify associativity property:

B([x, y], z) � B(x, [y, z]) (53)

given by:

B([x, y], z) � T r
(
ad[x,y]adz

) � T r
([

adx , ady
]
adz

)

� T r
(
adx

[
ady, adz

]) � B(x, [y, z]) (54)

Elie Cartan proved that if g is a semi-simple Lie algebra (the form of Killing is
non-degenerate) then any symmetric bilinear form is a scalar multiple of the Cartan-
Killing form. TheCartan-Killing form is invariant under the action of automorphisms
σ ∈ Aut(g) of the algebra g:

B(σ (x), σ (y)) � B(x, y) (55)

This invariance is deduced from:
{
σ [x, y] � [σ (x), σ (y)]

z � σ (y)
⇒ σ

[
x, σ−1(z)

] � [σ (x), z]

bywritting adσ (x) � σ ◦ adx ◦ σ−1 (56)

Then, we can write:

B(σ (x), σ (y)) � T r
(
adσ (x)adσ (y)

) � T r
(
σ ◦ adx ady ◦ σ−1

)
� T r

(
adx ady

) � B(a, y) (57)

Cartan has introduced this natural inner product that is invariant by the automor-
phisms of the Lie algebra, from this Cartan-Killing form:

〈x, y〉 � −B(x, θ (y)) (58)

with θ ∈ g the Cartan involution (an involution on the Lie algebra g is an automor-
phism θ such that the square is equal to identity).

I summarize all these relations of information geometry from the characteristic
function of Koszul-Vinberg, and the duality given via the Cartan-Killing form, as
described in the figure below (Fig. 7):

Thanks to the expression of the characteristic function of Koszul-Vinberg and
the Cartan-Killing form, one can express the maximum Entropy density in a very
general way. For example, by applying these formulas to the cone � (self-dual:
�∗ � �) symmetric positive definite matrices Sym+(n), Cartan-Killing form gives
us the product of duality:

〈η, ξ 〉 � T r (ηT ξ ). ∀η, ξ ∈ Sym+(n) � {
ξ/ξ T � ξ, ξ > 0

}
(59)
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Fig. 7 Relations between cartan-killing form, koszul-vinberg characteristic function, potentials
and dual coordinates, and metrics of information geometry

The maximum entropy density is given by:

ψ�(β) �
∫

�∗

e−〈β,ξ 〉dξ � det(β)−
n+1
2 ψ�(Id )

and ξ̂ � ∂�(β)

∂β
� ∂(− logψ�(β))

∂β
� n + 1

2
β−1 (60)

From which, I can deduce the final expression:

pξ̂ (ξ ) � e
−
〈
−1(ξ̂ ),ξ

〉
+�

(
−1(ξ̂ )

)

� ψ�(Id).
[
det

(
αξ̂−1

)]
.e

−T r
(
αξ̂−1ξ

)

with α � n + 1

2
(61)

We can apply this approach for multivariate Gaussian densities. In the case of
multivariate Gaussian densities, as noted by Souriau [17, 79], the classical Gibbs
expression can be rewritten by modifying the coordinate system and defining a new
duality product [80–84, 98]. The multivariate Gaussian density is classically written
with the following coordinate system (m, R), with m the mean vector, and R the
covariance matrix of the vector z:

pξ̂ (ξ ) � 1

(2π)n/2 det(R)1/2
e− 1

2 (z−m)T R−1(z−m) with

{
m � E(z)

R � E
[
(z − m)(z − m)T

]

(62)
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By developing the term in the exponential:

1

2
(z − m)T R−1(z − m) � 1

2

[
zT R−1z − mT R−1z − zT R−1m + mT R−1m

]

� 1

2
zT R−1z − mT R−1z +

1

2
mT R−1m (63)

I can write this density as a Gibbs density by introducing a new duality bracket
between

(
z, zzT

)
and

(−R−1m, 1
2 R−1

)
:

pξ̂ (ξ ) � 1

(2π)n/2 det(R)1/2e
1
2 mT R−1m

e−[−mT R−1z+ 1
2 zT R−1z] � 1

Z
e−〈ξ,β〉

ξ �
[

z

zzT

]

and β �
⎡

⎣
−R−1m
1
2 R−1

⎤

⎦ �
[

a
H

]

with 〈ξ, β〉 � aT z + zT H z � T r
[
zaT + H T zzT

]
(64)

We can then write the density in Koszul form:

pξ̂ (ξ ) � 1
∫

�∗
e−〈ξ,β〉.dξ

e−〈ξ,β〉 � 1

Z
e−〈ξ,β〉

with log(Z) � n log(2π ) +
1

2
log det(R) +

1

2
mT R−1m

ξ �
[

z

zzT

]

,ξ̂ � E[ξ ] �
[

E[z]

E
[
zzT

]

]

�
[

m

R + mmT

]

,β �
[

a
H

]

�
⎡

⎣
−R−1m
1
2 R−1

⎤

⎦

with 〈ξ, β〉 � T r
[
zaT + H T zzT

]

R � E
[
(z − m)(z − m)T

] � E
[
zzT − mzT − zmT + mmT

] � E
[
zzT

] − mmT

(65)

We are then able to compute the Koszul-Vinberg characteristic function whose
opposite of the logarithm provides the potential function:

ψ�(β) �
∫

�∗

e−〈ξ,β〉.dξ

and �(β) � − logψ�(β) � 1

2

[−T r
[
H−1aaT

]
+ log

[
(2)n det H

] − n log(2π)
]

(66)

that verifies the following relation given by Koszul and linked with 1st Koszul form:
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∂�(β)

∂β
� ∂

[− logψ�(β)
]

∂β
�
∫

�∗

ξ
e−〈ξ,β〉

∫

�∗
e−〈ξ,β〉.dξ

�
∫

�∗

ξ.pξ̂ (ξ ).dξ � ξ̂

∂�(β)

∂β
�
⎡

⎣
∂�(β)
∂α

∂�(β)
∂H

⎤

⎦ �
[

m

R + mmT

]

� ξ̂ (67)

The 2nd dual potential is given by the Legendre transform of �(β):

S(ξ̂ ) �
〈
ξ̂ , β

〉
−�(β) with

∂�(β)

∂β
� ξ̂ and

∂S(ξ̂ )

∂ξ̂
� β

S
(
ξ̂
)

� −
∫

�∗

e−〈ξ,β〉
∫

�∗
e−〈ξ,β〉.dξ

log
e−〈ξ,β〉

∫

�∗
e−〈ξ,β〉.dξ

.dξ � −
∫

�∗

pξ̂ (ξ ) logpξ̂ (ξ ).dξ (68)

that is explicitly identified with the classical Shannon Entropy:

S(ξ̂ ) � −
∫

�∗

pξ̂ (ξ ) log pξ̂ (ξ ).dξ

� 1

2

[
log(2)n det

[
H−1

]
+ n log(2π.e)

] � 1

2

[
log det[R] + n log(2π.e)

]
(69)

The Fisher metric of Information Geometry is given by the hessian of the opposite
of the logarithm of the Koszul-Vinberg characteristic function:

ds2g � dβT I (β)dβ �
∑

i j

gi j dβi dβ j

with gi j � [I (β)]i j and I (β) � −Eξ

[
∂2 log pβ(ξ )

∂β2

]

� ∂2 logψ�(β)

∂β2
(70)

Then, for the multivariate Gaussian density, we have the following Fisher metric:

ds2 �
∑

i j

gi j dθi dθ j � dmT R−1dm +
1

2
T r

[(
R−1d R

)2]
(71)

Geodesic equations are given by Euler-Lagrange equations:

n∑

i�1

gik θ̈i +
n∑

i, j�1

�i jk θ̇i θ̇ j � 0, k � 1, . . . , n

with Γi jk � 1

2

[
∂g jk

∂θi
+
∂g jk

∂θ j
+
∂gi j

∂θk

]

(72)

that can be reduced to the equations:
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{
R̈ + ṁṁT − Ṙ R−1 Ṙ � 0

m̈ − Ṙ R−1ṁ � 0
(73)

I use a result of Souriau [17] that the component of«moment map»are constants
(geometrization of EmmyNoether theorem), to identify the following constants [83]:

d�R

dt
�
⎡

⎣
d(R−1 Ṙ+R−1ṁmT )

dt
d(R−1ṁ)

dt

0 0

⎤

⎦ � 0

⇒
{

R−1 Ṙ + R−1ṁmT � B � cste

R−1ṁ � b � cste
(74)

with �R the moment map introduced by Souriau [17]. This moment map could be
computed if we consider the following Lie group acting in case of Gaussian densities:

[
Y
1

]

�
[

R1/2 m
0 1

][
X
1

]

�
[

R1/2X + m
1

]

,

⎧
⎪⎪⎨

⎪⎪⎩

(m, R) ∈ Rn×Sym+(n)

M �
[

R1/2 m
0 1

]

∈ Ga f f

X ≈ ℵ(0, I ) → Y ≈ ℵ(m, R) (75)

R1/2, square root of R, is given by Cholesky decomposition of R. R1/2 is the Lie
group of triangular matrix with positive elements on the diagonal. Euler-Poincaré
equations, reduced equations from Euler-Lagrange equations, are then given by:

{
ṁ � Rb

Ṙ � R(B − bmT )
(76)

Geodesic distance between multivariate Gaussian density is then obtained by
“geodesic shooting” method that will provide iteratively the final solution from the
tangent vector at the initial point:

(
R−1(0)ṁ(0), R−1(0)

(
Ṙ(0) + ṁ(0)m(0)T

)) � (b, B) ∈ Rn×Sym+(n) (77)

From which, we then deduce the distance:

d �
√

ṁ(0)T R−1(0)ṁ(0) +
1

2
T r

[(
R−1(0)Ṙ(0)

)2]
(78)

Geodesic shooting is obtained by using equations established by Eriksen [127,
128] for “exponential map” using the following change of variables:
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{
�(t) � R−1(t)

δ(t) � R−1(t)m(t)
⇒

⎧
⎪⎪⎨

⎪⎪⎩

�̇ � −B� + bmT

δ̇ � −Bδ +
(
1 + δT�−1δ

)
b

�(0) � Ip, δ(0) � 0

with

{
�̇(0) � −B

δ̇(0) � b

(79)

The method based on geodesic shooting consists in iteratively approaching the
solution by geodesic shooting in direction

(
δ̇(0), �̇(0)

)
, using the following expo-

nential map (Fig. 8):

�(t) � exp(t A) �
∞∑

n�0

(t A)n

n!
�
⎛

⎜
⎝

� δ �

δT ε γ T

�T γ �

⎞

⎟
⎠

with A �
⎛

⎜
⎝

−B b 0

bT 0 −bT

0 −b B

⎞

⎟
⎠ (80)

The principle of geodesic shooting is the following. We consider one geodesic
χ between θ0 and θ1 with an initial tangent vector V from the origin, and assume
that V is modified by W , with respect to V + W . Variation of final point θ1 could be
obtained by Jacobi vector field J (0) � 0 and J̇ (0) � W :

J (t) � d

dα
expθ0 (t(V + αW ))|α�0 (81)

Fig. 8 Principle of geodesic shooting in the direction of the initial vector V0 at the origin and
correction by W0
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5 Koszul’s Study of Homogeneous Bounded Domains
and Affine Representations of Lie Groups and Lie
Algebras

Jean-Louis Koszul [15, 16, 41, 45–47, 49, 50] and his student Jacques Vey [39, 40]
introduced new theorems with more general extension than previous results:

Koszul theorem [50]: Let Ω be a sharp convex open in an affine space of E of
finite dimension on R. If a unimodular Lie group of affine transformations operates
transitively on �, � is a cone.

Koszul-Vey Theorem [40]: Let M a hessian connected manifold associated with the
hessian metric g. Assume that M has a closed 1-form α such that Dα � g and that
there is a group G of affine automorphisms of M preserving α, then:

• If M/G is almost compact, then the manifold, universal covering of M , is affinely
isomorphic to a convex domain of an affine space containing no straight line.

• If M/G is compact, then � is a sharp convex cone.

Jean-Louis Koszul developed his theory, studying the homogeneous domains, in
particular the homogeneous symmetric bounded domains of Siegel, which we note
DS [44, 48]. He has proved that there is a subgroup G in the group of complex affine
automorphisms of these domains (Iwasawa subgroup), so that G acts on DS in a
merely transitive way. The Lie algebra g of G has a structure which is an algebraic
translation of the Kähler structure DS.

Koszul considered onG/B an invariant complex structure tensor I . All the invariant
volumes on G/B, equal up to a constant factor, define with the complex structure the
same invariant Hermitian form on G/B, called Hermitian canonical form, denoted
h. Let E be a differentiable fiber space of base M and let p be the projection of E
on M, such that p∗((pX). f ) � X.(p∗ f ). The projection p : E → M defines an
injective homomorphism p∗ of the space of differential forms of M in the space
of the differential forms of E such that for any form α of degree n on M and any
sequence of n projectable vectors fields, we have p∗(α(pX1, pX2, . . . , pXn)) �
(p∗α)(X1, X2, . . . , Xn). Let I be the tensor of an almost complex structure on the
basis M, there exists on E a tensor J of type (1,1) and only one which possesses
the following properties p(J X) � I (pX) and J 2X � −X mod h, X ∈ g for any
vector field X on E. Let G be a connected Lie group and B a closed subgroup of G,
we note g the Lie algebra left invariant vector fields on G and b sub-algebra of g
corresponding to B. The canonical mapping of G on G/B is denoted p (defining E as
before). We assume that there exists on G/B an invariant volume by G, which consist
in assuming that, for all s ∈ B, the automorphism X → Xs of g defines by passing
to the quotient an automorphism of determinant 1 in g/b. Let r be the dimension
of G/B and (Xi )1≤i≤m a base of g such that Xi ∈ b, for r ≤ i ≤ m. Let (ξi )1≤i≤m

the base of the space of differential forms of degree 1 left invariant on G such that
ξi
(
X j

) � δi j . If ω is an invariant volume on G/B, then � � p∗ω is equal, up to a
constant factor, to ξ1 ∧ ξ2 ∧ . . . ∧ ξr . We will assume the base

(
X j

)
chosen so that
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this factor is equal to 1, let � � ξ1 ∧ ξ2 ∧ . . . ∧ ξr . For any vector field that can be
projected X on G, we have:

p∗(div(pX ))� � p∗((div(pX ))ω) � p∗((pX )ω) � X� �
r∑

j�1

ξ j ([X j , X ])�

(82)

p∗(div(pX )) �
r∑

j�1

ξ j ([X j , X ]) (83)

These elements being defined, Koszul calculates the Hermitian canonical form of
G/B, denoted h, more particularly η � p∗h on G. Let X and Y both right invariant
vector fields on G. They are projectable and the fields pX and pY are conformal
vector fields on G/B such that div(pX) � div(pY ) � 0, because the volume and
the complex structure of G/B are invariant under G. As a result, if κ is the Kähler
form of h and if α � p∗κ , then:

4α(X,Y ) � 4p∗(κ(pX, pY )) � p∗div(I [pX, pY ]) (84)

and as p(J [X,Y ]) � I [pX, pY ], we obtain:

4α(X,Y ) � p∗div(J [X,Y ]) �
2n∑

i�1

ξi ([Xi , J [X,Y ]]) (85)

X and Y are two left invariant vectors fields on G. X ‘ and Y’ right invariant vectors
fields coinciding with X and Y at the point e, neutral element of G. If T � [

X ′,Y ′]

is tight invariant vectors fields which coincide with −[X,Y ] on e, then:

[X, J T ] � J [X, [X,Y ]] − [X, J [X,Y ]] at point e (86)

At point e, we have the equality:

4α(X,Y ) �
2n∑

i�1

ξi ([J [X,Y ], Xi ] − J [[X,Y ], Xi ]) (87)

As the form α is invariant on the left by G, this equality is verified for all points.
For any endomorphism  of the space g such that b ⊂ b, we denote by T rb the
trace of the restriction of  to b and by T rg/b the trace of the endomorphism of
g/b deduced from  by passage to the quotient, with T r � T rb + T rg/b. We
have:

Trg/b �
2n∑

i�1

ξi (Xi ) (88)
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Whatever X ∈ g and s ∈ B, we have J (Xs) − (J X)s ∈ b. If ad(Y ) is the
endomorphism of g defined by ad(Y ).Z � [Y, Z ], we have (Jad(Y )− ad(Y )J )g ⊂
b for all Y ∈ b. We can deduce, for all X ∈ g, the endomorphism ad(J X)− Jad(X )
leaves steady the subspace b. Koszul defines a linear form � on the space g by
defining:

�(X ) � T rg/b(ad(J X ) − Jad(X )) ,∀X ∈ g (89)

Koszul has finally obtained the following fundamental theorem:
Theorem of Koszul [15]:
The Kähler form of the Hermitian canonical form has for image by p∗ the differ-

ential of the form − 1
4�(X ) � − 1

4T rg/b(ad(J X)− Jad(X )),∀X ∈ g
Koszul note that the form � is independent of the choice of the tensor J . It is

determined by the invariant complex structure of G/B. The form � is right invariant
by B. For all s ∈ B, note the endomorphism r (s) : X → Xs of g. Since J (Xs) �
(J X )s mod b and that T rg/bad(Y ) � 0, we have:

�(Xs) � T rg/b(ad((J X )s) − Jad(Xs)), ∀X ∈ g ,∀Y ∈ b (90)

�(Xs) � T rg/b(r (s)ad(J X )r (s)−1 − Jr (s)ad(X )r (s)−1) (91)

�(Xs) � �(X ) + T rg/b((J − r (s)−1 Jr (s))ad(X )), ∀X ∈ g, s ∈ B (92)

As
(
J − r (s)−1 Jr (s)

)
maps g in b, we get �(Xs) � �(X ). The form � is not

zero on b. This is not the image by p∗ of a differential form of G/B. However, the
right invariance of � on B is translated, infinitesimally by the relation:

�([b, g]) � (0) (93)

Koszul proved that the canonical hermitian form h of a homogeneous Kähler
manifold G/B has the following expression:

η(X,Y ) � 1

2
Ψ ([J X,Y ])

with

{
Ψ ([X,Y ]) � Ψ ([J X, JY ])

η([J X, JY ]) � η(X,Y )
∀X,Y ∈ g (94)

To do, the link with the first chapters, I can summarize the main result of Koszul
that there is an integrable structure almost complex J on g, and for l ∈ g∗ defined
by a positive J -invariant inner product on g:

〈X,Y 〉l � 〈[J X,Y ], l〉 (95)

Koszul has proposed as admissible form, l ∈ g∗, the form ξ :



364 F. Barbaresco

�(X ) � 〈X, ξ 〉 � Tr [ad(J X ) − J.ad(X )] ∀X ∈ g (96)

Koszul proved that 〈X,Y 〉ξ coincides, up to a positive multiplicative constant;
with the real part of the Hermitian inner product obtained by the Bergman metric
of symmetric homogeneous bounded domains DS by identifying g with the tangent
space of DS. �(X) is the restriction to g of a differential form � of degree 1, with
left invariance on G. This form is fully defined by the invariant complex structure
of G/B. This form is invariant to the choice of J . This form is invariant on the right
by B. We have �([X,Y ]) � 0 with X ∈ g,Y ∈ b. The exterior differential d� of
� is the inverse image by the projection G → G/B of degree 2 form Ω . This form
� is, up to a constant, the Kähler form h, defined by the canonical Hermitian form
of G/B: h(π.X, π.Y ) � 1

2 (d�)(X, J.Y ),∀X,Y ∈ G as it is proved in Bourbaki
seminar by Koszul in [129].

The 1st Koszul form is then given by:

α � −1

4
d�(X) (97)

We can illustrate this structure for the simplest example of DS, the Poincaré upper
half-plane V � {z � x + iy/y > 0}which is isomorphic to the open zz∗ < 1, which
is a bounded domain. The group G of transformations z → az + b with a and b real
values with a > 0 is simply transitive in V . We identify G and V by the application
passing from s ∈ G an element to the image i � √−1 by s.

Let’s define vector fields X � y d
dx and Y � y d

dy which generate the vector space
of left invariant vectors fields on G, and J an almost complex structure on V defined
by J X � Y . As [X,Y ] � −Y and ad(Y ).Z � [Y, Z ] then:

{
T r [ad(J X ) − Jad(X )] � 2

T r [ad(JY ) − Jad(Y )] � 0
(98)

The Koszul forms and the Koszul metric are respectively given by:

�(X ) � 2
dx

y
⇒ α � −1

4
d� � −1

2

dx ∧ dy

y2
⇒ ds2 � dx2 + dy2

2y2
(99)

I note that α � − 1
4d�(X) is indeed the Kähler form of Poincaré’s metric, which

is invariant by the automorphisms of the upper half-plane.
The following example concerns V � {Z � X + iY/X,Y ∈ Sym(p),Y > 0}

the upper half-space of Siegel (which is the most natural extension of the Poincaré
half-plane) with:

{
SZ � (AZ + B)D−1

AT D � I, BT D � DT B
with S �

(
A B
0 D

)

and J �
(
0 I
−I 0

)

(100)

We can then compute Koszul forms and the metric:
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�(d X + idY ) � 3p + 1

2
T r (Y −1d X )

⇒
⎧
⎨

⎩

α � − 1
4d� � 3p+1

8 T r
(
Y −1d Z ∧ Y −1d Z̄

)

ds2 � (3p+1)
8 T r

(
Y −1d ZY −1d Z̄

) (101)

We recover Carl-Ludwig Siegel metric for the upper half space.
More recent development on Kähler manifolds are described in [130] et [131].
Koszul studied symmetric homogeneous spaces and defines the relation between

invariant flat affine connections and the affine representations of Lie algebras and
invariant Hessian metrics characterized by affine representations of Lie algebras.
Koszul provides a correspondence between symmetric homogeneous spaces with
invariant Hessian structures using affine representations of Lie algebras, and proves
that a symmetric homogeneous space simply connected with an invariant Hessian
structure is a direct product of a Euclidean space and of a homogeneous dual-cone.
Let G be a connected Lie group and G/K a homogeneous space over which G acts
effectively. Koszul gives a bijective correspondence between all planarG -invariantes
connections on G/K and all of a certain class of affine representations of the Lie
algebra of G. The main theorem of Koszul is:

Koszul’s theorem: Let G/K be a homogeneous space of a connected Lie group
G and be g and k the Lie algebras of G and K , assuming that G/K has G-invariant
connection, then admits an affine representation (f, q) on the vector space E. Con-
versely, assume that G is simply connected and has an affine representation, then
G/K admits a flat G-invariant connection.

In the foregoing, the basic tool studied by Koszul is the affine representation of
Lie algebra and Lie group. To study these structures, Koszul introduced the following
developments.

Let� a convex domain on Rn without any straight lines, and an associated convex
cone V (�) � {(λx, x) ∈ Rn×R/x ∈ �, λ ∈ R+}, then there exist an affine embed-
ding:

" : x ∈ � �→
[

x
1

]

∈ V (�) (102)

If we consider η the group of homomorphism of A(n, R) in GL(n + 1, R) given
by:

s ∈ A(n, R) �→
[
f(s) q(s)

0 1

]

∈ GL(n + 1, R) (103)

and the affine representation of Lie algebra:
[

f q

0 0

]

(104)
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with A(n, R) the group of all affine representations of Rn . We have η(G(�)) ⊂
G(V (�)) and the pair (η, ") of homomorphism η : (G(Ω) → G(V (Ω)) and the
application " : � → V (�) is equivariant.

If we observe Koszul affine representations of Lie algebra and Lie group, we have
to consider G a convex Lie group and E a real or complex vector space of finite size,
Koszul has introduced an affine representation of G in E such that:

E → E

a �→ sa ∀s ∈ G (105)

is an affine representation. We set A(E) the set of all affine transformation of a real
vector space E , a Lie group called affine representation group of E . The set GL(E)
of all regular linear representation of E , a sub-group of A(E).

We define a linear representation of G in GL(E):

f : G → GL(E)

s �→ f(s)a � sa − so ∀a ∈ E (106)

and a map from G to E :

q : G → E

s �→ q(s)so ∀s ∈ G (107)

then, we have ∀s, t ∈ G:

f(s)q(t) + q(s) � q(st) (108)

deduced from f(s)q(t) + q(s) � sq(t) − sq + so � sq(t) � sto � q(st).
Inversely, if a map q from G to E and a linear representation f from G to GL(E)

verifying previous equation, then we can define an affine representation from G in
E , written by (f,q):

A f f (s) : a �→ sa � f(s)a + q(s)∀s ∈ G,∀a ∈ E (109)

The condition f(s)q(t) + q(s) � q(st) is equal to the request that the following
mapping is an homomorphism:

A f f : s ∈ G �→ A f f (s) ∈ A(E) (110)

We write f the affine representation of Lie algebra g of G, defined by f and q the
restriction to g to the differential of q ( f and q differential of f and q respectively),
Koszul proved the following equation:

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ])∀X,Y ∈ g

with f : g → gl(E) and q : g �→ E (111)
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where gl(E) the set of all linear endomorphisms of E , Lie algebra of GL(E).
We use the assumption that:

q(AdsY ) � dq
(
s.etY .s−1

)

dt

∣
∣
∣
∣
∣
t�0

� f(s) f (Y )q(s−1) + f(s)q(Y ) (112)

We then obtain:

q([X,Y ]) � dq
(

Adet X Y
)

dt

∣
∣
∣
∣
∣
t�0

� f (X )q(Y )q(e) + f(e) f (Y )(−q(X )) + f (X )q(Y ) (113)

where e is neutral element of G. Since f(e) is identity map and q(e) � 0, we have
the equality:

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ]) (114)

A pair ( f, q) of linear representation of f of a Lie algebra g on E and a linear
map q from g in E is an affine representation of g in E , if it satisfy:

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ]) (115)

Inversely, if we assume that g has an affine representation ( f, q) on E , by using
the coordinate systems {x1, . . . , xn} on E , we can express the affine map v �→
f (X )v + q(Y ) by a matrix representation of size (n + 1) × (n + 1):

a f f (X ) �
[

f (X ) q(X )

0 0

]

(116)

where f (X ) is a matrix of size n × n and q(X ) a vector of size n.
X �→ a f f (X ) is an injective homomorphism of Lie algebra g in Lie algebra of

matrices (n + 1) × (n + 1), gl(n + 1, R):
∣
∣
∣
∣
∣

g → gl(n + 1, R)

X �→ a f f (X )
(117)

If we note ga f f � a f f (g), we write Ga f f linear Lie sub-group of GL(n + 1, R)
generated by ga f f . One element of s ∈ Ga f f could be expressed by:

A f f (s) �
[
f(s) q(s)

0 1

]

(118)

Let Ma f f the orbit of Ga f f from the origin o, then Ma f f � q(Ga f f ) � Ga f f /Ka f f

where Ka f f � {s ∈ Ga f f /q(s) � 0} � K er (q).
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We can give as example the following case. Let� a convex domain in Rn without
any straight line, we define the cone V (�) in Rn+1 � Rn × R by V (�) � {(λx, x) ∈
Rn × R/x ∈ �, λ ∈ R+}. Then, there is an affine embedding:

" : x ∈ � �→
[

x
1

]

∈ V (�) (119)

If we consider η the group of homomorphisms of A(n, R) in GL(n + 1, R) given
by:

s ∈ A(n, R) �→
[
f(s) q(s)

0 1

]

∈ GL(n + 1, R) (120)

with A(n, R) the group of all affine transformations in Rn . We have η(G(�)) ⊂
G(V (�)) and the pair (η, ") of homomorphism η : G(�) → G(V (�)) and the map
" : � → V (�) are equivariant:

" ◦ s � η(s) ◦ " and d" ◦ s � η(s) ◦ d" (121)

6 Koszul Lecture on Geometric and Analytics Mechanics,
Related to Geometric Theory of Heat (Souriau’s Lie
Group Thermodynamics) and Theory of Information
(Information Geometry)

Before that Professor Koszul passed away in January 2018, he gave his agreement to
his book “Introduction to Symplectic Geometry” translation fromChinese to English
by SPRINGER [18]. This Koszul’s book translation genesis dates back to 2013. We
had contacted Professor Jean-LouisKoszul, to deeper understand hiswork in the field
of homogeneous bounded domains within the framework of Information Geometry.
Professor Michel Boyom succeeded to convince Jean-Louis Koszul to answer pos-
itively to our invitation to attend the 1st GSI “Geometric Science of Information”
conference in August 2013 at Ecole desMines ParisTech in Paris, andmore especialy
to attend the talk of Hirohiko Shima, given for his honor on the topic “Geometry of
Hessian Structures” (Fig. 9).

I was more particularly interested by Koszul’s work developed in the
paper«Domaines bornées homogènes et orbites de groupes de transformations
affines » [45] of 1961, written by Koszul at the Institute for Advanced Studies at
Princeton during a stay funded by the National Science Foundation. Koszul proved
in this paper that on a complex homogeneous space, an invariant volume defines with
the complex structure the canonical invariant Hermitian form introduced in [15]. It
is in this article that Koszul uses the affine representation of Lie groups and Lie
algebras.
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Fig. 9 Jean-Louis Koszul and Hirihiko Shima at GSI’13 “Geometric Science of Information” con-
ference in Ecole des Mines ParisTech in Paris, October 2013

The use by Koszul of the affine representation of Lie groups and Lie algebras
drew our attention, especially on the links of his approach with the similar one used
by Jean-Marie Souriau in geometric mechanics in the framework of homogeneous
symplectic manifolds. I have then looked for links between Koszul and Souriau
works. I finally discovered, that in 1986, Koszul published this book “Introduction
to symplectic geometry” following a Chinese course in China. I also observed that
this book takes up and develops works of Jean-Marie Souriau on homogeneous
symplectic manifolds and the affine representation of Lie algebras and Lie groups
in geometric mechanics.

I have then exchanged e-mails with Professor Koszul on Souriau works and on
genesis of thisBook. InMay2015, questioningKoszul onSouriauworkonGeometric
Mechanics and on Lie Group Thermodynamics, Koszul answered me “[A l’époque
où Souriau développait sa théorie, l’establishment avait tendance à ne pas y voir
des avancées importantes. Je l’ai entendu exposer ses idées sur la thermodynamique
mais je n’ai pas du tout réalisé à l’époque que la géométrie hessienne était en jeu.]
At the time when Souriau was developing his theory, the establishment tended not to
see significant progress. I heard him explaining his ideas on thermodynamics but I
did not realize at the time that Hessian geometry was at stake“. In September 2016,
I asked him the origins of Lie Group and Lie Algebra Affine representation. Koszul
informed me that he attended Elie Cartan Lecture, where he presented seminal work
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on this topic: “[Il y a là bien des choses que je voudrais comprendre (trop peut-être
!), ne serait-ce que la relation entre ce que j’ai fait et les travaux de Souriau. Détecter
l’origine d’une notion ou la première apparition d’un résultat est souvent difficile.
Je ne suis certainement pas le premier à avoir utilisé des représentations affines de
groupes ou d’algèbres de Lie. On peut effectivement imaginer que cela se trouve
chez Elie Cartan, mais je ne puis rien dire de précis. A propos d’Elie Cartan: je n’ai
pas été son élève. C’est Henri Cartan qui a été mon maître pendant mes années de
thèse. En 1941 ou 42 j’ai entendu une brève série de conférences données par Elie
à l’Ecole Normale et ce sont des travaux d’Elie qui ont été le point de départ de
mon travail de thèse.] There are many things that I would like to understand (too
much perhaps!), If only the relationship between what I did and the work of Souriau.
Detecting the origin of a notion or the first appearance of a result is often difficult.
I am certainly not the first to have used affine representations of Lie groups or Lie
algebras. We can imagine that it is at Elie Cartan, but I cannot say anything specific.
About Elie Cartan: I was not his student. It was Henri Cartan who was my master
during my years of thesis. In 1941 or 42, I heard a brief series of lectures given by
Elie at the Ecole Normale and it was Elie’s work that was the starting point of my
thesis work”.

After discovering the existence of this Koszul’s book, written in Chinese based
on a course given at Nankin, on “Introduction to Symplectic Geometry”, where he
made reference to Souriau’s book and developed his main tools, I started to discuss
its content. In January 2017, Koszul wrote me, with the usual humility “[Ce petit
fascicule d’introduction à la géométrie symplectique a été rédigé par un assistant
de Nankin qui avait suivi mon cours. Il n’y a pas eu de version initiale en français.]
This small introductory booklet on symplectic geometry was written by a Nanjing
assistant who had taken my course. There was no initial version in French “. I asked
him if he had personal archive of this course, he answered “[Je n’ai pas conservé de
notes préparatoires à ce cours. Dites-moi à quelle adresse je puis vous envoyer un
exemplaire du texte chinois.] I have not kept any preparatory notes for this course.
Tell me where I can send you a copy of the Chinese text. “. Professor Koszul then
sent me his last copy of this book in Chinese, a small green book (Fig. 10).

I was not able to read the Chinese text, but I have observed in Chap. 4 “Symplectic
G-spaces” and in Chap. 5 “Poisson Manifolds”, that their equations content new
original developments of Souriau work on moment map and affine representation
of Lie Group and Lie Algebra. More especially, Koszul considered equivariance of
moment map, where I recover Souriau theorem. Koszul shows that when (M; ω) is a
connected Hamiltonian G-space andμ a moment map of the action of G, there exists
an affine action of G on g* (dual Lie algebra), whose linear part is the coadjoint
action, for which the moment μ is equivariant. Koszul developed Souriau idea that
this affine action is obtained by modifying the coadjoint action by means of a closed
cochain (called cocycle by Souriau), and that (M; ω) is a G-Poisson space making
reference to Souriau’s book for more details.

About collaboration between Koszul and Souriau and another potential Lecture
on Symplectic Geometry in Toulouse, Koszul informed me in February 2017 that:
“[J’ai plus d’une fois rencontré Souriau lors de colloques, mais nous n’avons jamais
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Fig. 10 Original small
green Koszul’s book
“Introduction to symplectic
geometry” in Chinese

collaboré. Pour ce qui est de cette allusion à un “cours” donné à Toulouse, il y
erreur. J’y ai peut être fait un exposé en 81, mais rien d’autre.] I have met Souriau
more than once at conferences, but we have never collaborated. As for this allusion
to a “course” given in Toulouse, there is error. I could have made a presentation
in 81, but nothing else. “. Koszul admitted that he had no direct collaboration with
Souriau: “[Je ne crois pas avoir jamais parlé de ses travaux avec Souriau. Du reste
j’avoue ne pas en avoir bien mesuré l’importance à l’époque] I do not think I ever
talked about his work with Souriau. For the rest, I admit that I did not have a good
idea of the importance at the time”.

Considering the importance of this book for different communities, I tried to
find an editor for its translation in English. By chance, I met Catriona Byrne from
SPRINGER, when I gave a talk at IHES, invited by Pierre Cartier, on Koszul and
Souriau works application in Radar. With help of Michel Boyom, we have convinced
Professor Koszul to translate this book, proposing to contextualize this book with
regard to the contemporary research trends in Geometric Mechanics, Lie Groups
Thermodynamics and Geometric Science of Information. Professors Marle and
Boyom accepted to check the translation and help me to write the forewords.
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In the historical Foreword of this book, Koszul write “The development of ana-
lytical mechanics provided the basic concepts of symplectic structures. The term
symplectic structure is due largely to analytical mechanics. But in this book, the
applications of symplectic structure theory to mechanics is not discussed in any
detail”. Koszul considers in this book purely algebraic and geometric developments
of Geometric/Analytic Mechanics developed during the 60th, more especially Jean-
Marie Souriau works detailed in Chaps. 4 and 5. The originality of this book lies in
the fact that Koszul develops newpoints of view, and demonstrations not considered
initially by Souriau and Geometrical Mechanics community.

Jean-Marie Souriau was the Creator of a new discipline called “Mécanique
Géométrique (Geometric Mechanics)”. Souriau observed that the collection of
motions of a dynamical system is a manifold with an antisymmetric flat tensor that
is a symplectic form where the structure contains all the pertinent information on
the state of the system (positions, velocities, forces, etc.). Souriau said: “[Ce que
Lagrange a vu, que n’a pas vu Laplace, c’était la structure symplectique] What
Lagrange saw, that Laplace didn’t see, was the symplectic structure”. Using the sym-
metries of a symplectic manifold, Souriau introduced a mapping which he called the
“moment map”, which takes its values in a space attached to the group of symmetries
(in the dual space of its Lie algebra). Souriau associated to this moment map, the
notion of symplectic cohomology, linked to the fact that such a moment is defined
up to an additive constant that brings into play an algebraic mechanism (called
cohomology). Souriau proved that the moment map is a constant of the motion, and
provided geometric generalization of Emmy Noether invariant theorem (invariants
of E. Noether theorem are the components of the moment map). Souriau has defined
in a geometrically way the Noetherian symmetries using the Lagrange-Souriau
2 form with the application map. Influenced by François Gallissot (Souriau and
Galissot both attended ICM’54 in Moscow, and should have exchanged during this
conference), Souriau has introduced in Mechanics the Lagrange 2-form, recovering
seminal Lagrange ideas. Motivated by variational principles in a coordinate free for-
mulation, inspired by Henri Poincaré and Elie Cartan who introduced a differential
1-form instead of the Lagrangian, Souriau introduced the Lagrange 2-form as the
exterior differential of the Poincaré-Cartan 1-form, and obtained the phase space as
a symplectic manifold. Souriau proposed to consider this Lagrange 2-form as the
fundamental structure for Lagrangian system and not the classical Lagrangian func-
tion or the Poincaré-Cartan 1-form. This 2-form is called Lagrange-Souriau 2 form,
and is the exterior derivative of the Lepage form (the Poincaré-Cartan form is a first
order Lepage form). This structure is developed in Koszul book, where the authors
shows that when (M; ω) is an exact symplectic manifold (when there exists a 1-form
α on M such that ω�– dα), and that a symplectic action leaves not only ω, but α
invariant, this action is strongly Hamiltonian ((M; ω) is a g-Poisson space). Koszul
shows that a symplectic action of a Lie algebra g on an exact symplectic manifold
(M;ω�– dα) that leaves invariant not only ω, but also α, is strongly Hamiltionian.

In this Book in Chap. 4, Koszul calls symplectic G-space a symplectic manifold
(M; ω) on which a Lie group G acts by a symplectic action (an action which leaves
unchanged the symplectic formω). Koszul then introduces and develop properties of
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the moment map μ (Souriau’s invention) of a Hamiltonian action of the Lie algebra
g. Koszul also defines the Souriau 2-cocycle, considering that the difference of two
moments of the same Hamiltonian action is a locally constant application on M,
showing that when μ is a moment map, for every pair (a;b) of elements of g, the
function cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − 〈μ, {a, b}〉 is locally constant on M, defining
an antisymmetric bilinear application of gxg in H0(M; R) which verifies Jacobi’s
identity. This is the 2-cocycle introduced by Jean-Marie Souriau in Geometric
Mechanics, that will play a fundamental role in Souriau Lie Groups Thermody-
namics to define an extension of the Fisher Metric from Information Geometry
(what I will call Fisher-Souriau metric in the following).

To highlight the importance of this Koszul book, we will illustrate the links of the
detailed tools, includingdemonstrations or originalKoszul extensions,withSouriau’s
Lie Groups Thermodynamics, whose applications range from statistical physics to
machine learning in Artificial Intelligence. In 1970, Souriau introduced the concept
of co-adjoint action of a group on its momentum space, based on the orbit method
works, that allows to define physical observables like energy, heat and momentum
or moment as pure geometrical objects. In a first step to establish new foundations
of thermodynamics, Souriau has defined a Gibbs canonical ensemble on a symplec-
tic manifold M for a Lie group action on M. In classical statistical mechanics, a
state is given by the solution of Liouville equation on the phase space, the partition
function. As symplectic manifolds have a completely continuous measure, invari-
ant by diffeomorphisms (the Liouville measure λ), Souriau has proved that when
statistical states are Gibbs states (as generalized by Souriau), they are the product
of the Liouville measure by the scalar function given by the generalized partition
function e�(β)−〈β,U (ξ )〉 defined by the energy U (defined in the dual of the Lie algebra
of this dynamical group) and the geometric temperature β, where� is a normalizing
constant such the mass of probability is equal to 1, �(β) � − log

∫

M
e−〈β,U (ξ )〉dλ.

Jean-Marie Souriau then generalizes the Gibbs equilibrium state to all symplectic
manifolds that have a dynamical group. Souriau has observed that if we apply this
theory for Galileo, the symmetry will be broken. For each temperature β, element
of the Lie algebra g, Souriau has introduced a tensor ̃β , equal to the sum of the
cocycle ̃ and the heat coboundary (with [.,.] Lie bracket):

̃β(Z1, Z2) � ̃(Z1, Z2) + 〈Q, adZ1(Z2)〉 (122)

This tensor ̃β has the following properties: ̃(X,Y ) � 〈(X ),Y 〉 where the
map  is the symplectic one-cocycle of the Lie algebra g with values in g∗ , with
(X ) � Teθ (X (e)) where θ the one-cocycle of the Lie group G. ̃(X,Y ) is constant
on M and the map ̃(X,Y ) : g×g → � is a skew-symmetric bilinear form, and is
called the symplectic two-cocycle of Lie algebra g associated to the moment map J ,
with the following properties:

̃(X,Y ) � J[X,Y ] − {JX , JY }with J theMomentMap (123)
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̃([X,Y ], Z ) + ̃([Y, Z ], X ) + ̃([Z , X ],Y ) � 0 (124)

where JX linear application from g to differential function on M : g →
C∞(M, R), X → JX and the associated differentiable application J , called moment
map:

J : M → g∗, x �→ J (x) such that JX (x) � 〈J (x), X〉, X ∈ g (125)

The geometric temperature, element of the algebra g, is in the kernel of the tensor
̃β :

β ∈ K er ̃β such that ̃β(β, β) � 0, ∀β ∈ g (126)

The following symmetric tensor gβ([β, Z1], [β, Z2]) � ̃β(Z1, [β, Z2]), defined
on all values of adβ (.) � [β, .] is positive definite, and defines extension of classical
Fisher metric in Information Geometry (as hessian of the logarithm of partition
function):

gβ([β, Z1], Z2) � ̃β(Z1, Z2), ∀Z1 ∈ g,∀Z2 ∈ Im
(
adβ (.)

)
(127)

With gβ(Z1, Z2) ≥ 0, ∀Z1, Z2 ∈ Im
(
adβ (.)

)
(128)

These equations are universal, because they are not dependent on the sym-
plectic manifold but only on the dynamical group G, the symplectic two-cocycle
, the temperature β and the heat Q. Souriau called it “Lie groups thermody-
namics”.

This antisymmetric bilinear map (127) and (128), with definition (122) and
(123) is exactly equal to the mathematical object introduced in Chap. 4 of Koszul’s
book by:

cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − {μ, 〈a, b〉} (129)

In this book, Koszul has studied this antisymmetric bilinear map considering the
following developments. For anymomentmapμ, Koszul defines the skew symmetric
bilinear form cμ(a, b) on Lie algebra by:

cμ(a, b) � 〈
dθμ(a), b

〉
, a, b ∈ g (130)

Koszul observes that if we use:

θμ(st) � μ(st x) − Ad∗
stμ(x) � θμ(s) + Ad∗

s μ(t x) − Ad∗
s Ad∗

t μ(x) � θμ(s) + Ad∗
s θμ(t)

by developing dμ(ax) �t adaμ(x) + dθμ(a), x ∈ M, a ∈ g, he obtains:

〈dμ(ax), b〉 � 〈μ(x), [a, b]〉 + 〈dθμ(a), b
〉 � {〈μ, a〉, 〈μ, b〉}(x), x ∈ M, a, b ∈ g

(131)
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We have then:

cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − 〈μ, [a, b]〉 � 〈
dθμ(a), b

〉
, a, b ∈ g (132)

and the property:

cμ([a, b], c) + cμ([b, c], a) + cμ([c, a], b) � 0, a, b, c ∈ g (133)

Koszul concludes by observing that if the moment map is transform asμ′ � μ+φ
then we have:

cμ′(a, b) � cμ(a, b) − 〈φ, [a, b]〉 (134)

Finally using cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − 〈μ, [a, b]〉 � 〈
dθμ(a), b

〉
, a, b ∈ g,

koszul highlights the property that:

{
μ∗(a), μ∗(b)

} � {〈μ, a〉, 〈μ, b〉} � μ∗([a, b] + cμ(a, b)
) � μ∗{a, b}cμ (135)

In Chap. 4, Koszul introduces the equivariance of the moment map μ. Based on
the definitions of the adjoint and coadjoint representations of a Lie group or a Lie
algebra, Koszul proves that when (M; ω) is a connected Hamiltonian G-space and
μ : M → g∗ a moment of the action of G, there exists an affine action of G on g*,
whose linear part is the coadjoint action, for which the momentμ is equivariant. This
affine action is obtained by modifying the coadjoint action by means of a cocycle.
This notion is also developed in Chap. 5 for Poisson manifolds. Defining classical
operation Adsa � sas−1, s ∈ G, a ∈ g, adab � [a, b], a ∈ g, b ∈ g and coadjoint
action given by Ad∗

s �t Ads−1 , s ∈ G with classical properties:

Adexp a � exp(−ada), a ∈ g or Ad∗
exp a � expt (ada), a ∈ g (136)

Koszul considers:

x �→ sx, x ∈ M, μ : M → g∗ (137)

From which, he obtains:

〈dμ(v), a〉 � ω(ax, v) (138)

Koszul then study μ ◦ sM − Ad∗
s ◦ μ : M → g∗, and develops:

d
〈
Ad∗

s ◦ μ, a
〉 � 〈

Ad∗
s dμ, a

〉 � 〈dμ, Ads−1a〉 (139)

〈dμ(v), Ads−1a〉 � ω(s−1asx, v) � ω(asx, sv) � 〈dμ(sv), a〉 � (d〈μ ◦ sM , a〉)(v)
(140)
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d
〈
Ad∗

s ◦ μ, a
〉 � d〈μ ◦ sM , a〉 and then proves that d

〈
μ ◦ sM − Ad∗

s ◦ μ, a
〉 � 0

(141)

Koszul considers the cocycle given by θμ(s) � μ(sx) − Ad∗
s μ(x), s ∈ G, and

observes that:

θμ(st) � θμ(s) − Ad∗
s θμ(t), s, t ∈ G (142)

From this action of the group on dual Lie algebra:

G × g∗ → g∗, (s, ξ ) �→ sξ � Ad∗
s ξ + θμ(s) (143)

Koszul introduces the following properties:

μ(sx) � sμ(x) � Ad∗
s μ(x) + θμ(s),∀s ∈ G, x ∈ M (144)

G × g∗ → g∗, (e, ξ ) �→ eξ � Ad∗
e ξ + θμ(e) � ξ + μ(x) − μ(x) � ξ (145)

(s1s2)ξ � Ad∗
s1s2ξ + θμ(s1s2) � Ad∗

s1 Ad∗
s2ξ + θμ(s1) + Ad∗

s1θμ(s2)

(s1s2)ξ � Ad∗
s1 (Ad∗

s2ξ + θμ(s2)) + θμ(s1) � s1(s2ξ ),∀s1, s2 ∈ G, ξ ∈ g∗ (146)

This Koszul study of the moment mapµ equivariance, and the existence of an
affine action of G on g*, whose linear part is the coadjoint action, for which the
moment µ is equivariant, is at the cornerstone of Souriau Theory of Geometric
Mechanics and Lie Groups Thermodynamics. I illustrate this importance by
giving Souriau theorem for Lie Groups Thermodynamics, and the link with,
what I call, Souriau-Fisher metric (a covariant definition of Fisher metric):

Theorem (Souriau Theorem of Lie Group Thermodynamics). Let � be the
largest open proper subset of g, Lie algebra of G, such that

∫

M
e−〈β,U (ξ )〉dλ and

∫

M
ξ.e−〈β,U (ξ )〉dλ are convergent integrals, this set � is convex and is invariant under

every transformation Adg(.). Then, the fundamental equations of Lie group thermo-
dynamics are given by the action of the group:

Action of Lie group on Lie algebra : β → Adg(β) (147)

Characteristic f unction a f ter Lie group action : � → �− 〈
θ (g−1), β

〉

(148)

I nvariance of entropy wi th respect to action of Lie group : s → s (149)

Action of Lie group on geometric heat : Q → a(g, Q) � Ad∗
g (Q) + θ (g)

(150)
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Fig. 11 Broken symmetry on geometric heat Q due to adjoint action of the group on temperature
β as an element of the Lie algebra

Fig. 12 Global Souriau scheme of Lie group thermodynamics, with entropy s(Q), geometric heat
Q element of dual Lie algebra and geometric temperature β element of Lie algebra

Souriau equations of Lie group thermodynamics, related to the moment map μ
equivariance, and the existence of an affine action of G on g*, whose linear part is
the coadjoint action, for which the moment μ is equivariant, are summarized in the
following figures (Figs. 11 and 12).
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I finally observe that the Koszul antisymmetric bilinear map cμ(a, b) �
{〈μ, a〉, 〈μ, b〉}−〈μ, {a, b}〉 is equal to Souriau Riemannian metric, introduced by
mean of symplectic cocycle. I have observed that this metric is a generalization of
the Fisher metric from Information Geometry, that I call the Souriau-Fisher metric,
defined as a hessian of the partition function logarithm gβ � − ∂2�

∂β2 � ∂2 logψ�

∂β2 as in
classical information geometry. This new definition of Fisher metric has the property
to be covariant under the action of the group G. I have established the equality of two
terms, between Souriau definition based on Lie group cocycle  and parameterized
by “geometric heat” Q (element of dual Lie algebra) and “geometric temperature” β
(element of Lie algebra) and hessian of characteristic function�(β) � − log��(β)
with respect to the variable β:

gβ([β, Z1], [β, Z2]) � 〈(Z1), [β, Z2]〉 + 〈Q, [Z1, [β, Z2]]〉 � ∂2 logψ�

∂β2
(151)

If we differentiate this relation of Souriau theorem Q(Adg(β)) � Ad∗
g (Q) + θ (g),

this relation occurs:

∂Q

∂β
(−[Z1, β], .) � ̃(Z1[β, .]) +

〈
Q, Adz1 ([β, .])

〉 � ̃β(Z1, [β, .]) (152)

−∂Q

∂β
([Z1, β], Z2.) � ̃(Z1, [β, Z2]) +

〈
Q, Ad.z1 ([β, Z2])

〉 � ̃β(Z1, [β, Z2])

(153)

⇒ −∂Q

∂β
� gβ([β, Z1], [β, Z2]) (154)

The Souriau Fisher metric I (β) � − ∂2�(β)
∂β2 � − ∂Q

∂β
has been considered by

Souriau as a generalization of “heat capacity”. Souriau called it the “geometric
capacity” and is also equal to “geometric susceptibility”.

7 Conclusion

The community of “Geometric Science of Information” (GSI) has lost a mathe-
matician of great value, who informed his views by the depth of his knowledge of
the elementary structures of hessian geometry and bounded homogeneous domains.
His modesty was inversely proportional to his talent. Professor Koszul built in over
60 years of mathematical career, in the silence of his passions, an immense work,
whichmakes him one of the great mathematicians of the XX’s century, whose impor-
tance will only affirm with the time. In this troubled time and rapid transformation
of society and science, the example of Professor Koszul must be regarded as a model
for future generations, to avoid them the trap of fleeting glories and recognitions too
fast acquired. The work of Professor Koszul is also a proof of fidelity to his masters
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Fig. 13 (on the left) Jean-Louis Koszul at Grenoble in December 1993, (on the right) last interview
of Jean-Louis Koszul in 2016 for 50th birthday of Institut Joseph Fourier in Grenoble

and in the first place to Prof. Elie Cartan, who inspired him throughout his life. Henri
Cartan writes on this subject “I do not forget the homage he paid to Elie Cartan’s
work in Differential Geometry during the celebration, in Bucharest, in 1969, of the
centenary of his birth. It is not a coincidence that this centenary was also celebrated
in Grenoble the same year. As always, Koszul spoke with the discretion and tact that
we know him, and that we love so much at home”. I will conclude by quoting Jorge
Luis Borges “Forgetfulness and memory are also inventive” (Brodie’s report). Our
generation and previous one have forgotten ormisunderstood the depth of thework of
Jean-Louis Koszul and Elie Cartan on the study of bounded homogeneous domains.
It is our responsibility to correct this omission, and to make it the new inspiration
for the Geometric Science of Information. I will conclude by requesting you to lis-
ten to the last interview of Jean-Louis Koszul for 50th birthday of Joseph Fourier
Institute [72], especially when Koszul he is passionate by “conifers and cedars trees
planted by Claude Chabauty”, or by the “pretty catalpa tree”whichwas at the Fourier
Institute and destroyed by wind, “the tree with parentheses” he says, to which he
seemed to be sentimentally attached. He also regrets that the Institute did not use
the 1% artistic fund for the art mosaic project in the library. In this Koszul family
of mathematicians, musicians, and Scientifics, there was a constant recollection of
“beauty” and “truth”. Our society no longer cares about timeless “beauty”. We have
then to extase ourself with Jean-Louis Koszul by observing beautiful “Catalpa tree”
with “Parenthese Mushroom”, before there is no longer people to contemplate them
(Fig. 13).

“Seul la nuit avec un livre éclairé par une chandelle – livre et chandelle, double îlot de
lumière, contre les doubles ténèbres de l’esprit et de la nuit. J’étudie ! Je ne suis que le
sujet du verbe étudier. Penser je n’ose. Avant de penser, il faut étudier. Seuls les philosophes
pensent avant d’étudier.» - Gaston Bachelard, La flamme d’une chandelle, 1961
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Appendix

Clairaut(-Legendre) Equation of Maurice Fréchet associated to “distinguished
functions” as fundamental equation of Information geometry

Before Rao [4, 124], in 1943,Maurice Fréchet [3] wrote a seminal paper introduc-
ing what was then called the Cramer-Rao bound. This paper contains in fact much
more that this important discovery. In particular, Maurice Fréchet introduces more
general notions relative to “distinguished functions”, densities with estimator reach-
ing the bound, defined with a function, solution of Clairaut’s equation. The solutions
“envelope of the Clairaut’s equation” are equivalents to standard Legendre transform
without convexity constraints but only smoothness assumption. This Fréchet’s anal-
ysis can be revisited on the basis of Jean-Louis Koszul’s works as seminal foundation
of “Information Geometry”.

I will use Maurice Fréchet notations, to consider the estimator:

T � H(X1, . . . , Xn) (155)

and the random variable

A(X ) � ∂ log pθ (X )

∂θ
(156)

that are associated to:

U �
∑

i

A(Xi ) (157)

The normalizing constraint
+∞∫

−∞
pθ (x)dx � 1 implies

that:
+∞∫

−∞
. . .

+∞∫

−∞

∏

i
pθ (xi )dxi � 1

If we consider the derivative if this last expression with respect to θ , then
+∞∫

−∞
. . .

+∞∫

−∞

[
∑

i
A(xi )

]
∏

i
pθ (xi )dxi � 0 gives:

Eθ [U ] � 0 (158)

Similarly, if we assume that Eθ [T ] � θ , then
+∞∫

−∞
. . .

+∞∫

−∞
H(x1, . . . , xn)

∏

i
pθ (xi )dxi � θ , and we obtain by derivation with

respect to θ :

E[(T − θ)U ] � 1 (159)

But as E[T ] � θ and E[U ] � 0, we immediatly deduce that:
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E[(T − E[T ])(U − E[U ])] � 1 (160)

From Schwarz inequality, we can develop the following relations:

[E(Z T )]2 ≤ E
[
Z2
]
E
[
T 2

]

1 ≤ E
[
(T − E[T ])2

]
E
[
(U − E[U ])2

] � (σTσU )
2 (161)

U being the summation of independent variables, Bienaymé equality could be
applied:

(σU )
2 �

∑

i

[
σA(Xi )

]2 � n(σA)
2 (162)

From which, Fréchet deduced the bound, rediscoved by Cramer and Rao 2 years
later:

(σT )
2 ≥ 1

n(σA)
2 (163)

Fréchet observed that it is a remarkable inequality where the second member is
independent of the choice of the function H defining the “empirical value” T , where
the first member can be taken to any empirical value T � H(X1, . . . , Xn) subject to
the unique condition Eθ [T ] � θ regardless is θ .

The classic condition that the Schwarz inequality becomes an equality helps us
to determine when σT reaches its lower bound 1√

nσn
.

The previous inequality becomes an equality if there are two numbersα and β (not
randomand not both zero) such thatα

(
H ′ − θ

)
+βU � 0,with H ′ particular function

among eligible H as we have the equality. This equality is rewritten H ′ � θ + λ′U
with λ′ a non-random number.

If we use the previous equation, then:

E[(T − E[T ])(U − E[U ])] � 1 ⇒ E
[(

H ′ − θ
)
U
] � λ′Eθ

[
U 2] � 1 (164)

We obtain:

U �
∑

i

A(Xi ) ⇒ λ′nEθ

[
A2] � 1 (165)

From which we obtain λ′ and the form of the associated estimator H ′:

λ′ � 1

nE
[
A2
] ⇒ H ′ � θ +

1

nE
[
A2
]
∑

i

∂ log pθ (Xi )

∂θ
(166)

It is therefore deduced that the estimator that reaches the terminal is of the form:
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H ′ � θ +

∑

i

∂ log pθ (Xi )
∂θ

n
+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

(167)

with E
[
H ′] � θ + λ′E[U ] � θ .

H ′ would be one of the eligible functions, if H ′ would be independent of θ .
Indeed, if we consider:

Eθ0

[
H ′] � θ0, E

[(
H ′ − θ0

)2
]

≤ Eθ0

[
(H − θ0)

2
] ∀H such that Eθ0 [H ] � θ0

(168)

H � θ0 satisfies the equation and inequality shows that it is almost certainly equal
to θ0. So to look for θ0, we should know beforehand θ0.

At this stage, Fréchet looked for “distinguished functions” (“densités distinguées”
in French), as any probability density pθ (x) such that the function:

h(x) � θ +
∂ log pθ (x)

∂θ

+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

(169)

is independant of θ . The objective of Fréchet is then to determine the minimizing
function T � H ′(X1, . . . , Xn) that reaches the bound. By deduction from previous
relations, we have:

λ(θ )
∂ log pθ (x)

∂θ
� h(x) − θ (170)

But as λ(θ ) > 0, we can consider 1
λ(θ) as the second derivative of a function

�(θ ) such that:

∂ log pθ (x)

∂θ
� ∂2�(θ )

∂θ2
[h(x) − θ ] (171)

from which we deduce that:

"(x) � log pθ (x) − ∂�(θ )

∂θ
[h(x) − θ] −�(θ ) (172)

Is an independant quantity of θ . A distinguished function will be then given by:

pθ (x) � e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x) (173)

with the normalizing constraint
+∞∫

−∞
pθ (x)dx � 1.
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These two conditions are sufficient. Indeed, reciprocally, let three functions�(θ ),
h(x) et "(x) that we have, for any θ :

+∞∫

−∞
e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x)dx � 1 (174)

Then the function is distinguished:

θ +
∂ log pθ (x)

∂θ

+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

� θ + λ(x)
∂2�(θ )

∂θ2
[h(x) − θ] (175)

If λ(x) ∂
2�(θ)
∂θ2

� 1, when

1

λ(x)
�

+∞∫

−∞

[
∂ log pθ (x)

∂θ

]2
pθ (x)dx � (σA)

2 (176)

The function is reduced to h(x) and then is not dependent of θ .
We have then the following relation:

1

λ(x)
�

+∞∫

−∞

(
∂2�(θ )

∂θ2

)2

[h(x) − θ ]2e
∂�(θ )
∂θ

(h(x)−θ)+�(θ)+"(x)dx (177)

The relation is valid for any θ , we can derive the previous expression from θ :

+∞∫

−∞
e
∂�(θ )
∂θ

(h(x)−θ)+�(θ)+"(x)

(
∂2�(θ )

∂θ2

)

[h(x) − θ ]dx � 0 (178)

We can divide by ∂2�(θ)
∂θ2

because it doesn’t depend on x .
If we derive again with respect to θ , we will have:

+∞∫

−∞
e
∂�(θ)
∂θ

(h(x)−θ)+�(θ)+"(x)

(
∂2�(θ )

∂θ2

)

[h(x) − θ ]2dx �
+∞∫

−∞
e
∂�(θ)
∂θ

(h(x)−θ)+�(θ)+"(x)dx � 1

(179)

Combining this relation with that of 1
λ(x) , we can deduce that λ(x)

∂2�(θ)
∂θ2

� 1 and

as λ(x) > 0 then ∂2�(θ)
∂θ2

> 0.
Fréchet emphasizes at this step, another way to approach the problem. We can

select arbitrarily h(x) and l(x) and then �(θ ) is determined by:
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+∞∫

−∞
e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x)dx � 1 (180)

That could be rewritten:

eθ.
∂�(θ )
∂θ

−�(θ) �
+∞∫

−∞
e
∂�(θ )
∂θ

h(x)+"(x)dx (181)

If we then fixed arbitrarily h(x) and l(x) and let s an arbitrary variable, the fol-
lowing function will be an explicit positive function given by e�(s):

+∞∫

−∞
es.h(x)+"(x)dx � e�(s) (182)

Fréchet obtained finally the function �(θ ) as solution of the equation:

�(θ ) � θ.
∂�(θ )

∂θ
−�

(
∂�(θ )

∂θ

)

(183)

Fréchet noted that this is the Alexis Clairaut Equation.
The case ∂�(θ)

∂θ
� cste would reduce the density to a function that would be

independent of θ , and so�(θ ) is given by a singular solution of this Clairaut equation,
that is unique and could be computed by eliminating the variable s between:

� � θ.s −�(s) and θ � ∂�(s)

∂s
(184)

Or between:

eθ.s−�(θ) �
+∞∫

−∞
es.h(x)+"(x)dx and

+∞∫

−∞
es.h(x)+"(x)[h(x) − θ ]dx � 0 (185)

�(θ ) � − log
+∞∫

−∞
es.h(x)+"(x)dx + θ.s where s is induced implicitly through the

constraint given by the integral
+∞∫

−∞
es.h(x)+"(x)[h(x) − θ]dx � 0.

When we known the distinguished function, H ′ is among functions
H (X1, . . . , Xn) verifying Eθ [H ] � θ and such that σH reaches for each value of θ ,
an absolute minimum, equal to 1√

nσA
. For the previous equation:
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h(x) � θ +
∂ log pθ (x)

∂θ

+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

(186)

We can rewrite the estimator as:

H ′(X1, . . . , Xn) � 1

n
[h(X1) + . . . + h(Xn)] (187)

and compute the associated empirical value:

t � H ′(x1, . . . , xn) � 1

n

∑

i

h(xi ) � θ + λ(θ )
∑

i

∂ log pθ (xi )

∂θ
(188)

If we take θ � t , we have as λ(θ ) > 0:

∑

i

∂ log pt (xi )

∂t
� 0 (189)

When pθ (x) is a distinguished function, the empirical value t of θ corresponding
to a sample x1, . . . , xn is a root of previous equation in t . This equation has a root
and only one when X is a distinguished variable. Indeed, as we have:

pθ (x) � e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x) (190)

∑

i

∂ log pt (xi )

∂t
� ∂2�(t)

∂t2

⎡

⎣

∑

i
h(xi )

n
− t

⎤

⎦with
∂2�(t)

∂t2
> 0 (191)

We can then recover the unique root: t �
∑

i
h(xi )

n .
This function T ≡ H ′(X1, . . . , Xn) � 1

n

∑

i
h(Xi ) can have an arbitrary form, that

is a sum of functions of each only one of the quantities and it is even the arithmetic
average of N values of a same auxiliary random variable Y � h(X ). The dispersion
is given by:

(
σTn

)2 � 1

n(σA)
2 � 1

n
+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

� 1

n ∂2�(θ)
∂θ2

(192)

and Tn follows the probability density:

pθ (t) � √
n

1

σA

√
2π

e
− n(t−θ)2

2.σ2A with (σA)
2 � ∂2�(θ )

∂θ2
(193)
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• Clairaut Equation and Legendre Transform

To summarize, Fréchet paper novelty, I have just observed that Fréchet intro-
duced distinguished functions depending on a function�(θ ), solution of the Clairaut
equation:

�(θ ) � θ.
∂�(θ )

∂θ
−�

(
∂�(θ )

∂θ

)

(194)

Or given by the Legendre Transform:

� � θ.s −�(s) and θ � ∂�(s)

∂s
(195)

Fréchet also observed that this function �(θ ) could be rewritten:

�(θ ) � − log
+∞∫

−∞
es.h(x)+"(x)dx + θ.s where s is induced implicitly by the con-

straints given by integral
+∞∫

−∞
es.h(x)+"(x)[h(x) − θ ]dx � 0.

This equation is the fundamental equation of Information Geometry.
The “Legendre” transform was introduced by Adrien-Marie Legendre in 1787 to

solve a minimal surface problem Gaspard Monge in 1784. Using a result of Jean
Baptiste Meusnier, a student of Monge, it solves the problem by a change of variable
corresponding to the transform which now entitled with his name. Legendre wrote:
“I have just arrived by a change of variables that can be useful in other occasions.”
About this transformation, Darboux in his book gives an interpretation of Chasles:
“This comes after a comment by Mr. Chasles, to substitute its polar reciprocal on
the surface compared to a paraboloïd.” The equation of Clairaut was introduced
40 years earlier in 1734 by Alexis Clairaut. Solutions “envelope of the Clairaut
equation” are equivalent to the Legendre transformwith unconditional convexity, but
only under differentiability constraint. Indeed, for a non-convex function, Legendre
transformation is not defined where the Hessian of the function is canceled, so that
the equation of Clairaut only make the hypothesis of differentiability. The portion
of the strictly convex function g in Clairaut equation y = px – g (p) to the function
f giving the envelope solutions by the formula y = f (x) is precisely the Legendre
transformation. The approach of Fréchet may be reconsidered in a more general
context on the basis of the work of Jean-Louis Koszul.
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